Présentation
En anglaisNOTE DE L'ÉDITEUR
La norme NF EN 13445 et tous ses corrigenda, cités dans cet article ont été remplacé par la norme NF EN 13445, Récipients sous pression non soumis à la flamme (version de mai 2021)
Pour en savoir plus, consultez le bulletin de veille normative VN2112 (Décembre 2021).
La partie 3 de la norme NF EN 13445-3 V4 de mars 2019 citée dans cet article a été remplacée par la norme NF EN 13445-3/A6, /A7 et /A8 (E86-200-3/A6, /A7, /A8) : Récipients sous pression non soumis à la flamme - Partie 3 : Conception - Amendements 6, 7 et 8. (Révision 2019)
Pour en savoir plus, consultez le bulletin de veille normative VN1904 (avril 2019).
Les normes NF EN 13445-1 à -5 et -8 citées dans cet article ont été remplacées par les normes NF EN 13445-1 à -5 et -8 V4 (E86-200-1 à -5 et -8) "Récipients sous pression non soumis à la flamme :
- Partie 1 : généralités
- Partie 2 : matériaux
- Partie 3 : conception
- Partie 4 : fabrication
- Partie 5 : inspection et contrôles
- Partie 8 : exigences complémentaires pour les récipients sous pression en aluminium et alliages d'aluminium" (Révision 2019)
Pour en savoir plus, consultez le bulletin de veille normative VN1903 (mars 2019).
Les normes NF EN 13445-2 V3 de décembre 2014 et NF EN 13445-6 V2 de décembre 2014 citées dans cet article ont été modifiées par NF EN 13445-2/A3 et -6/A2 (E86-200-2/A3 et -6/A2) "Récipients sous pression non soumis à la flamme - Partie 2 : matériaux - Amendement 3 - Partie 6 : Exigences pour la conception et la fabrication des récipients sous pression et des parties sous pression moulés en fonte à graphite sphéroïdal - Amendement 2" (Révision 2018)
Pour en savoir plus, consultez le bulletin de veille normative VN1812 (décembre 2018).
Les normes NF EN 13445-2 V3 et -3 V3 de décembre 2014 (3èmes tirages de décembre 2016) citées dans cet article ont été modifiées par les normes NF EN 13445-2/A2 et -3/A5 (E86-200-2/A2 et -3/A5) : Récipients sous pression non soumis à la flamme - Partie 2 : matériaux (amendement 2) - Partie 3 : Conception (amendement 5).
Pour en savoir plus, consultez le bulletin de veille normative VN1811 (novembre 2018).
Les parties 2 et 5 de la norme NF EN 13445 de décembre 2014 citée dans cet article ont été remplacées par NF EN 13445-2/A4 et -5/A1 (E86-200-2/A4 et -5/A1) " Récipients sous pression non soumis à la flamme" et "Partie 2 : matériaux (Amendement 4) - Partie 5 : Inspection et contrôles (Amendement 1)" révision 2018.
Pour en savoir plus, consultez le bulletin de veille normative VN1807 (septembre 2018).
RÉSUMÉ
L’objet de cet article est de développer la démarche générale retenue pour la conception des enceintes sous pressions des circuits fluides. Les réacteurs nucléaires à eau sous pression (REP) comportent de nombreuses spécificités quant à la garantie d’intégrité du matériel. En effet, la prévention des risques de dégradation en service n’est pas à négliger. Les différents risques sont répertoriés dans cet article de la façon la plus exhaustive possible. La prévention du dommage de déformation excessive, du dommage d’instabilité plastique, du flambage, du dommage de déformation progressive, du dommage de fatigue, du dommage de rupture brutale, et autres dommages potentiels sont ainsi repris en détail.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
The aim of this article is to develop the general approach adopted for the design of pressurized enclosures for fluid circuits. Pressurized nuclear water reactors (PWR) carry many specificities as to the material’s integrity guarantee. Indeed, prevention of deterioration risks should not be disregarded. This article lists, as exhaustively as possible, these various risks. Prevention of damage due to excessive deformation, plastic instability, buckling, progressive deformation, fatigue, sudden failure, and other potential damage are examined in detail.
Auteur(s)
-
Jean-Marie GRANDEMANGE : AREVA-NP, Secrétaire de la Sous-Commission RCC-M de l'Association Française pour les règles de conception, de construction et de surveillance en exploitation des Chaudières Électro-Nucléaires (AFCEN)
INTRODUCTION
Les équipements et circuits des réacteurs nucléaires à eau sous pression (REP) sont avant tout des enceintes sous pression. Leurs spécificités concernent en premier lieu les garanties d'intégrité qui doivent être apportées compte tenu de leur importance pour la sûreté des réacteurs nucléaires. L'accent est donc mis sur l'exhaustivité de la prévention des risques de dégradation en service, et sur les scénarios de sûreté considérés, sans remise en cause fondamentale des bases de calcul des enceintes sous pression, également applicables aux équipements non nucléaires.
La deuxième spécificité d'une utilisation de ces enceintes dans les circuits des réacteurs nucléaires est constituée par les possibilités d'activation des produits résultant de l'usure ou de la corrosion lors de leur passage dans le cœur. Ce deuxième aspect se traduit par certaines restrictions dans le choix des matériaux mis en œuvre et la mise en place d'un revêtement sur la paroi interne des gros équipements du circuit primaire, qui peut lui-même être générateur de précautions particulières de construction et d'analyse.
L'objet du présent dossier est de développer la démarche générale retenue pour la conception des enceintes sous pression des circuits fluides des REP, en se focalisant plus particulièrement sur les particularités nucléaires de ces équipements, les démarches qu'ils partagent avec les matériels non nucléaires étant traitées par référence au dossier [A 843]. Quelques prolongements sur les règles applicables aux matériels soumis à température élevée (réacteurs à neutrons rapides RNR) sont évoqués en complément.
Le dossier [BN 3 282] complète le présent dossier en abordant les notions de classification des contraintes, la démarche générale de conception et d'analyse, les épreuves réglementaires et les modalités d'équivalence entre codes de construction industriels.
Dans le Pour en Savoir Plus Conception des enceintes sous pression- Partie 1[Doc. BN 3 280], le lecteur trouvera tous les textes réglementaires et les codes cités dans ce dossier.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Génie nucléaire
(170 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
8. Autres dommages potentiels
Le risque de fluage est considéré comme exclu si les limitations de la température d'emploi des matériaux données au sein de l'annexe Zl du RCC-M, qui donne les propriétés mécaniques utilisables pour le dimensionnement, sont respectées. Pour les applications à plus haute température, rencontrées dans le cas des réacteurs à neutrons rapides, le RCC-MR comporte des dispositions sur la prise en compte du fluage, de la relaxation et de l'interaction fatigue-fluage, qui sortent du cadre du présent dossier.
D'autres effets peuvent affecter le comportement global de la structure ou son comportement local.
-
S'agissant du comportement global, les modes d'endommagement susceptibles d'affecter les marges de sécurité visées peuvent résulter de mécanismes d'usure, de corrosion généralisée, d'érosion-cavitation ou de corrosion-érosion.
Les phénomènes d'usure peuvent se produire au niveau des pièces en contact, en présence de mouvements relatifs. Ils sont limités à des zones telles que les enveloppes de crayons dans les guides de grappes, les doigts de gants du circuit d'instrumentation et de contrôle, ou au niveau des contacts entre tubes de générateurs de vapeur et plaques entretoises, et au droit des barres antivibratoires. Certains risques d'usure par corps migrants doivent également être évités.
Les phénomènes de corrosion généralisée sont d'ampleur limitée compte tenu du choix des matériaux, et sont pris en compte à la conception au travers d'une surépaisseur, dite « de corrosion », qui doit rester limitée. La prévention du risque de corrosion généralisée est obtenue dans le circuit primaire par l'utilisation d'aciers austénitiques inoxydables ou d'alliages à haute teneur en nickel, un revêtement en acier inoxydable étant déposé en peau interne des composants en acier ferritique. Ces dispositions permettent d'éviter les inconvénients associés aux produits de corrosion, au niveau des transferts thermiques du combustible, des pertes de charge, des organes de robinetterie et des organes d'instrumentation. Par ailleurs, elles permettent de limiter la dosimétrie liée à l'activation des produits de corrosion.
Les phénomènes d'érosion-cavitation pourraient être rencontrés sur certains robinets. Cet endommagement est dû à l'implosion de bulles de vapeur au voisinage de la paroi, résultant des dépressions associées à de...
Cet article fait partie de l’offre
Génie nucléaire
(170 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Autres dommages potentiels
BIBLIOGRAPHIE
-
(1) - D'ESCATHA (Y.) - Prevention of plasticity-related damages and simplified methodology using purely elastic calculations. - SMIRT-Post conf. Sem. on Inelast. Anal. and Life Prediction in High Temperature Environment (1977).
-
(2) - LANGER (B.F.) - Design-stress basis for pressure vessels. - Exp. mech., janv. 1971.
-
(3) - HENG (C.), GRANDEMANGE (J.M.) - Framatome view on the comparison between class 1 and 2 RCC-M piping design rules. - WRC Bulletin 361, fév. 1991.
-
(4) - HENG (C.), GRANDEMANGE (J.M.), MOREL (A.) - RCC-M (Rules for design and construction of nuclear components). - Nuclear Eng. and Design, p. 265-277 (1987).
-
(5) - PONTER (A.R.S.), KARADENIZ (S.), CARTER (K.F.) - The computation of shakedown limits for structural components subjected to variable thermal loading. - Brussels diagrams, Contract RAP-054-UK, Commission of the European Communities, WGCS-AG2, EUR 12686 EN (1990).
-
(6)...
ANNEXES
ASME American Society of Mechanical Engineers http:/;/;www.asme.org
AFCEN Association Française pour les règles de conception et de construction des Chaudières Électro-Nucléaires http:/;/;www.afcen.com
ASN Autorité de Sûreté Nucléaire http:/;/;www.asn.gouv.fr
AFIAP Association Française des Ingénieurs en Appareils à Pression http:/;/;www.afiap.org
CENORM Comité Européen de Normalisation http:/;/;www.cenorm.be
UNM Union de Normalisation de la Mécanique http:/;/;www.unm.fr
HAUT DE PAGE
Arrêté du 12 décembre 2005 applicable aux Équipements Sous Pression Nucléaires (ESPN) ; JO du 22 janvier 2006 de la République Française.
Arrêté du 26 février 1974 portant application de la réglementation des appareils à pression aux chaudières nucléaires à eau. Recueil de textes publié dans « Sûreté Nucléaire en France ». Les éditions des Journaux Officiels.
Directive 97/;23/;CE du Parlement Européen et du Conseil du 29 mai 1997 (DESP) relative...
Cet article fait partie de l’offre
Génie nucléaire
(170 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive