Présentation

Article

1 - PROPRIÉTÉS DU CARBURE DE SILICIUM (SIC)

2 - MODÉLISATION DES DIODES SCHOTTKY EN RÉGIME DIRECT

3 - CONCLUSION

Article de référence | Réf : D3119 v1

Modélisation des diodes Schottky en régime direct
Propriétés physiques et électroniques du carbure de silicium (SiC)

Auteur(s) : Christophe RAYNAUD

Date de publication : 10 mai 2007

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Près d’un siècle après la découverte de ses propriétés semi-conductrices en 1907, le carbure de silicium apparaît sur la scène économique avec la mise sur le marché des premiers composants commerciaux : les diodes Schottky en 2002 et les transistors JFET peu après, ainsi que les MESFET dans le domaine des hyperfréquences. Le prix très élevé des substrats et couches épitaxiées rend impératif d’avoir des simulations numériques très précises des comportements en régime statique et dynamique des composants. En effet, plus les simulations sont précises, plus on peut espérer réduire le nombre d’essais avant de réussir les composants.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Almost a century after the discovery of its semi-conductive properties in 1907, the silicon carbide appeared on the economic scene with the placing on the market of the first commercial compounds: the Schottky diodes in 2002 and the JFET transistors shortly after as well as the MESFETs in the hyperfrequency field. The extremely high price of substrates and epitaxial layers requires very precise numerical simulations of behaviors in the static and dynamic regime of compounds. Indeed the more precise the simulations, the lesser the number of tests before the compounds are achieved.

Auteur(s)

INTRODUCTION

Près d’un siècle après la découverte de ses propriétés semi-conductrices en 1907, le carbure de silicium apparaît sur la scène économique avec la mise sur le marché des premiers composants commerciaux : les diodes Schottky en 2002 et les transistors JFET peu après, ainsi que les MESFET dans le domaine des hyperfréquences. Le prix très élevé des substrats et couches épitaxiées rend impératif d’avoir des simulations numériques très précises des comportements en régime statique et dynamique des composants. En effet, plus les simulations sont précises, plus on peut espérer réduire le nombre d’essais avant de réussir les composants.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-d3119


Cet article fait partie de l’offre

Conversion de l'énergie électrique

(269 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

2. Modélisation des diodes Schottky en régime direct

2.1 Description du modèle développé numériquement

La connaissance de la résistivité telle que calculée au § 1.6.5, permet de calculer la résistance série d’une diode Schottky ou bipolaire, dont on connaît les caractéristiques géométriques (épaisseur des couches, du substrat, surface des contacts ohmiques ou Schottky...).

Lors des mesures effectuées sur des diodes Schottky, il apparaît souvent, dans la zone de croissance exponentielle du courant en fonction de la tension une double pente à basse température.

Le calcul théorique de la caractéristique directe d’une diode Schottky s’effectue en utilisant le modèle thermoïonique, qui donne le courant sous la forme :

( 2 )

avec :

n
 : 
coefficient d’idéalité
Vd
 : 
tension aux bornes de la diode
T
 : 
température
k
 : 
constante de Boltzmann
q
 : 
charge élémentaire, q = 1,6 · 10–19 C
Isat
 : 
courant de saturation donné par :

avec :

Φe
 : 
hauteur...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Conversion de l'énergie électrique

(269 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Modélisation des diodes Schottky en régime direct
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - JACQUIER (C.) -   Nouvelles approches de la croissance épitaxiale de SiC : transport chimique en phase vapeur (CVT) et techniques à partir d’une phase liquide Al–Si.  -  Thèse de doctorat, Univ. Claud Bernard, LYON 1, 220 p., soutenue le 18 déc. 2003.

  • (2) - KONSTANTINOV (A.O.) et al -   *  -  Appl. Phys. Lett., 71, p. 90 (1997).

  • (3) - RAGHUNATHAN (R.), BALIGA (B.J.) -   *  -  Solid-State Electronics., 43, p. 199 (1999).

  • (4) - SHOCKLEY (W.) -   *  -  Solid-State Electron., 2, p. 35 (1961).

  • (5) - CHYNOWETH (A.G.) -   *  -  Phys. Rev., 109, p. 1537 (1958).

  • (6) - KONSTANTINOV (A.O.) et al -   *  -  J. Electron. Mater., 27, p. 335 (1998).

  • ...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Conversion de l'énergie électrique

(269 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS