Présentation
EnglishAuteur(s)
-
Laurent KOPP : Ingénieur de l’École Polytechnique - Thalès Ultrasonics
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
Les antennes à réseaux de capteurs jouent un rôle primordial dans de nombreux domaines techniques (sonar, radar, séismique, radio-astronomie, échographie, transmission et même optique) où elles remplacent très avantageusement les antennes « classiques » c’est-à-dire les antennes dont la performance est obtenue par la géométrie, en particulier les antennes à réflecteurs paraboliques.
Parmi les obstacles rencontrés dans l’amélioration des antennes « classiques » et résolus par les antennes à réseaux de capteurs, on peut citer :
-
Le dilemme entre le gain d’antenne (sensibilité) et la couverture (idéalement panoramique) : en utilisant une antenne réseau à grand nombre de capteurs, on bénéficie du gain d’antenne en réception, sans compromettre la couverture panoramique en utilisant le pointage électronique.
-
Le problème des interférences dans un monde de plus en plus congestionné : les antennes réseaux peuvent utiliser des traitements beaucoup plus sophistiqués que ceux qu’il est envisageable de câbler dans la géométrie, par exemple l’annulation supervisée du signal d’interférence ou l’apodisation adaptative.
-
Le problème des contraintes géométriques : les antennes de grande taille (classiques ou réseaux) se trouvent inévitablement confrontées à la taille limitée de la plate-forme support. Les antennes réseaux s’adaptent à toutes les géométries. Elles peuvent se déployer sur un terrain (radar RIAS ou prospection Sismique). Elles peuvent même s’arranger de géométries variables (flûtes remorquées en prospection sismique ou sonar TBF).
Tous ces problèmes sont donc résolus par l’utilisation des antennes réseaux mais, en outre, celles-ci présentent d’autres propriétés utiles. La plus intéressante nous semble la possibilité de partager une antenne entre plusieurs utilisateurs indépendants. Par exemple une station de base pourra desservir plusieurs abonnés simultanément dans le même canal (SDMA : Spatial Division Multiple Access) ; une antenne satellite pourra être pointée sur plusieurs satellites simultanément ; un radar pourra assurer une couverture panoramique sans mouvement mécanique en utilisant en parallèle plusieurs voies de réception (veille stratégique). Un enregistrement multicapteurs pourra être utilisé a posteriori pour faire un traitement d’antenne plus performant (sismique, surveillance). Le partage est également une possibilité pour amortir les coûts d’exploitation d’une installation.
Par ailleurs, les antennes à réseaux de capteurs sont aux antennes classiques ce qu’est l’échantillonnage au signal analogique (on parle d’ailleurs d’échantillonnage « spatial » pour les antennes réseaux). À ce titre ces antennes participent à la révolution numérique.
L’intelligence des antennes réseaux est contenue non pas dans leur géométrie, comme peut l’être celle d’une antenne parabolique, mais dans leurs traitements. Parler de traitement d’antenne est donc inévitable. Nous avons choisi de présenter le traitement des antennes réseaux [] en introduisant d’abord [] les outils utiles de la théorie statistique de la détection et de l’estimation ; ce faisant, il nous a semblé intéressant de rester suffisamment général dans la présentation. Nous espérons que les lecteurs principalement intéressés par la théorie statistique de la décision pourront alors considérer les antennes réseaux comme un domaine d’application propre à éclairer le sujet.
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Technologies de l'information > Technologies radars et applications > Systèmes radars > Détection et estimation en traitement d’antenne : théorie > Annexe : critère MiniMax
Accueil > Ressources documentaires > Technologies de l'information > Le traitement du signal et ses applications > Radiolocalisation > Détection et estimation en traitement d’antenne : théorie > Annexe : critère MiniMax
Cet article fait partie de l’offre
Technologies radars et applications
(69 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Annexe : critère MiniMax
Lorsque l’on connaît la valeur des probabilités a priori des deux hypothèses et les coûts afférant à chaque décision, on peut définir le test de détection qui minimise le coût moyen. On a vu que ce test était donné par :
Dans le cas d’une observation gaussienne on peut préciser la structure du récepteur :
Cet article fait partie de l’offre
Technologies radars et applications
(69 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Annexe : critère MiniMax
Cet article fait partie de l’offre
Technologies radars et applications
(69 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive