Présentation

Article

1 - CONTEXTE

2 - TECHNIQUES DE COMBINAISON INCOHÉRENTE

3 - TECHNIQUES DE COMBINAISON COHÉRENTE

4 - TECHNIQUES ALTERNATIVES ET APPLICATIONS SECONDAIRES DE LA COMBINAISON LASER

5 - CONCLUSION

6 - GLOSSAIRE

7 - SIGLES ET SYMBOLES

Article de référence | Réf : IN305 v1

Conclusion
Techniques de combinaison de sources laser

Auteur(s) : Pierre BOURDON

Date de publication : 10 oct. 2017

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais En anglais

RÉSUMÉ

Cet article présente les principales techniques permettant de combiner des sources laser afin d’accroître leur puissance. En effet, il existe des méthodes adaptées pour additionner efficacement, c’est-à-dire avec les pertes les plus faibles possibles, les puissances de plusieurs sources laser. Les techniques de combinaison de lasers sont classées en deux grandes familles: les configurations incohérentes procédant par simple superposition de faisceaux, et les configurations cohérentes utilisant les interférences optiques entre faisceaux laser identiques pour les combiner. Toutes ces techniques sont décrites ici, ainsi que leur potentiel pour la montée en puissance des sources laser.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Laser sources combining techniques

This article presents the main techniques used to combine laser sources and increase their joint power. There are appropriate techniques to sum the powers from multiple laser sources efficiently, i.e. with low losses. Laser combining techniques fall into two main classes: incoherent setups based on simple overlap of laser beams, and coherent setups involving optical interferences between identical laser beams to combine them. All these techniques are described, and their potential to power-scale laser sources is assessed.

Auteur(s)

  • Pierre BOURDON : Chargé de mission « Laser de puissance pour la défense » Département d’Optique Onera – The French Aerospace Lab, Palaiseau, France

INTRODUCTION

Les lasers sont des sources de puissance lumineuse extrêmement intenses, utilisées couramment pour déposer de l’énergie à distance, que ce soit pour effectuer des mesures de paramètres physiques comme la distance, la vitesse d’un objet ou la concentration d’une molécule, ou pour interagir avec un matériau afin de modifier son état physique en le fondant ou le brûlant (par exemple pour la découpe de pièces métalliques par laser dans l’industrie automobile). Certaines applications militaires comme les armes laser utilisent un faisceau laser pour échauffer fortement une cible à distance dans le but de l’endommager ou même de la détruire. Quelle que soit l’application, la portée d’action du laser, la vitesse d’interaction ou la sensibilité et la précision pour les applications liées à la mesure peuvent être améliorées en utilisant des lasers plus puissants. Aussi cherche-t-on souvent à accroître la puissance émise par les sources laser.

Les lasers les plus puissants, les plus compacts et les plus efficaces aujourd’hui sont les lasers solides, ainsi appelés car le milieu générant la puissance lumineuse est sous forme solide : généralement un barreau cylindrique ou une plaque parallélépipédique. Les fibres optiques dopées constituent également des milieux solides de choix pour réaliser des sources laser compactes, robustes et efficaces. Cependant, ces milieux solides s’échauffent lorsqu’ils sont mis en œuvre, et leurs performances se dégradent si l’échauffement devient trop important, limitant ainsi leur montée en puissance. Dans les lasers à fibres où ces effets thermiques sont toutefois beaucoup moins limitants que dans les lasers solides à barreaux ou à plaques, des effets non linéaires viennent s’ajouter et limiter aussi la montée en puissance.

Le lecteur trouvera en fin d’article un glossaire des termes utilisés.

Points clés

Domaine : Électronique – Photonique

Degré de diffusion de la technologie : Croissance

Technologies impliquées : Laser, optique, électronique

Domaines d’application : Développement de sources laser et montée en puissance.

Contact : [email protected]

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

laser   |   coherence   |   combining

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-in305


Cet article fait partie de l’offre

Optique Photonique

(221 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation
Version en anglais En anglais

5. Conclusion

Les techniques de combinaison incohérente, combinaison de polarisation, superposition spatiale, combinaison spectrale, sont des techniques relativement simples de mise en œuvre qui permettent d’additionner très efficacement les puissances de plusieurs lasers. Cependant, ces techniques ne donnent généralement pas accès à la combinaison de plus de quelques dizaines de sources laser, tout du moins sans sacrifier leur simplicité, leur fiabilité et leur robustesse.

Les techniques de combinaison cohérente, qu’elles soient passives ou actives, sont plus complexes en apparence puisqu’elles utilisent une figure d’interférences entre les faisceaux laser combinés pour concentrer la puissance.

Les techniques de combinaison cohérente passives sont elles aussi très limitées en nombre maximal de sources laser combinées, et il semble difficile d’additionner ainsi les puissances de plus de quelques dizaines de lasers.

Par contre, la combinaison cohérente par contrôle actif de la phase offre un potentiel élevé pour la combinaison de centaines voire de milliers de sources laser (avec certes une complexité proportionnelle au nombre de lasers combinés), en particulier si l’analyse de phase est réalisée par marquage en fréquence.

Le tableau 1 résume les avantages et inconvénients de toutes ces techniques de combinaison de lasers, ainsi que les points durs technologiques conduisant à limiter le nombre maximal de lasers que l’on peut espérer combiner.

Les techniques de combinaison spectrale et de combinaison cohérente sont encore à l’étude dans de nombreux laboratoires dans le monde, où on tente encore d’accroître, à la fois la puissance maximale et le nombre de sources laser maximal que l’on peut combiner, en essayant de surmonter les points durs mentionnés dans le tableau 1.

L’utilisation des techniques de combinaison de lasers pour compenser les turbulences atmosphériques se développent également et devraient être mises en œuvre plus fréquemment dans un futur proche.

Les applications principales visées par ces développements sont les armes laser anti-structures, mais aussi des applications civiles variées comme les Lidars, la génération d’étoiles artificielles laser, les télécommunications optiques ou encore les applications industrielles des lasers comme la découpe ou la soudure.

...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Optique Photonique

(221 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Conclusion
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - KLENKE (A.), BREITKOPF (S.), GOTTSCHALL (T.), EIDAM (T.), LIMPERT (J.), TÜNNERMANN (A.) -   4-channel coherently combined femtosecond fiber CPA system.  -  Conférence Photonics West 2013, p. 8601-8642 (2013).

  • (2) - KIEL (D.H.) -   Fiber lasers for surface Navy applications.  -  Conférence Photonics West 2010, p. 7580-7521 (2010).

  • (3) - HANKLA (B.J.) -   Navy laser weapon system (LaWS) prototype development and testing.  -  Conférence Photonics West 2011, p. 7915-7911 (2011).

  • (4) - JUNG (M.) -   The laser weapons program at Rheinmetall Combat Systems.  -  Research Meeting topic 2.3 « Laser and laser application », Institut Franco-Allemand de Saint-Louis (2013).

  • (5) - MOHRING (B.), DIETRICH (S.), TASSINI (L.), PROTZ (R.), GEIDEK (F.), ZOZ (J.) -   High-energy laser activities at MBDA Germany.  -  Proc. SPIE, 8733, 873304 (2013).

  • ...

1 Événements

Conférence SPIE – Photonics West : tous les ans à San Francisco http://spie.org/conferences-and-exhibitions/photonics-west

Conférence SPIE – Defense and Security : tous les ans aux États-Unis http://spie.org/conferences-and-exhibitions/defense--commercial-sensing

Conférence SPIE Europe –Security and Defense : tous les ans en Europe http://spie.org/conferences-and-exhibitions/security-and-defence

Conférence OSA – CLEO : tous les ans aux États-Unis http://www.cleoconference.org/home/

Conférence OSA – CLEO Europe : tous les deux ans (années impaires) en Allemagne http://www.cleoeurope.org/

Conférence OSA – CLEO Pacific Rim : tous les ans en Asie http://www.cleopacificrim.com/home/

Conférence OSA – ASSL : tous...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Optique Photonique

(221 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS