Présentation

Article

1 - APPLICATIONS DE L'IMAGERIE HYPERSPECTRALE

2 - SPECTRO-IMAGEURS FONCTIONNANT EN MODE MONOPOINT

3 - SPECTRO-IMAGEURS FONCTIONNANT EN MODE À CHAMP LINÉAIRE

4 - SPECTRO-IMAGEURS FONCTIONNANT EN MODE À TRAME POINTÉE

5 - SPECTRO-IMAGEURS FONCTIONNANT EN MODE À TRAME DÉFILANTE

6 - CONCLUSION

7 - ANNEXE : AVANTAGES DE LA SPECTROSCOPIE PAR TRANSFORMÉE DE FOURIER

Article de référence | Réf : E4111 v1

Spectro-imageurs fonctionnant en mode à champ linéaire
Spectro-imageurs

Auteur(s) : Yann FERREC

Date de publication : 10 févr. 2010

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

Les spectro-imageurs sont des instruments qui conjuguent les capacités d'imagerie avec celles de spectrométrie, en associant un spectre à chaque point de l'image. L'imagerie hyperspectrale, riche en information, est ainsi employée dans de nombreux domaines : biologie, étude et surveillance de l'environnement, astronomie, ou encore contrôle industriel. Toutes ces applications n'ont pas les mêmes besoins, et utilisent des dispositifs instrumentaux qui peuvent être très différents. Par exemple, le champ instantané peut être réduit à un point, à une fente, ou au contraire s'étendre dans les deux dimensions. La séparation spectrale peut être obtenue par des réseaux de diffraction, des filtres, des interféromètres ou d'autres moyens. Cet article présente un panorama de ces techniques de spectro-imagerie, en insistant sur les principes physiques utilisés, mais aussi sur les performances potentielles de ces dispositifs.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Yann FERREC : Docteur ès sciences - Ingénieur de l'École supérieure d'optique - Chercheur à l'Onera

INTRODUCTION

La spectro-imagerie (en anglais « spectral imaging »), née de la combinaison de l'imagerie et de la spectrométrie, a pour objet de générer des images résolues spectralement, ou, de manière équivalente, des spectres résolus spatialement. C'est donc une généralisation de l'imagerie en couleurs, à cette différence que le nombre de composantes spectrales associées à chaque pixel de l'image n'est plus limité à trois, mais peut aller au-delà du millier. Lorsque ce nombre est faible, autour de la dizaine, on parle plutôt d'imagerie multispectrale, et d'imagerie hyperspectrale quand le nombre de bandes dépasse quelques dizaines. Aujourd'hui, le terme de spectro-imagerie est devenu pratiquement synonyme d'imagerie hyperspectrale, et c'est dans ce sens que nous l'emploierons. La limite entre le domaine multispectral et le domaine hyperspectral n'a toutefois pas encore de définition précise et acceptée par tous les auteurs, même si la plupart s'accordent à ajouter qu'un instrument doit délivrer des images dans des bandes spectrales étroites et contiguës pour pouvoir être qualifié d'hyperspectral. La dénomination peut aussi varier avec la communauté d'utilisateurs. C'est ainsi qu'en astronomie, on trouvera couramment les termes de spectroscopie 3D, spectroscopie intégrale de champ ou spectroscopie à champ intégral (« integral field spectroscopy » en anglais), et imagerie chimique (chemical imaging« » en anglais) en biologie ou en chimie.

Les domaines d'application des spectro-imageurs sont en effet très vastes, puisqu'on en trouve aussi bien dans des microscopes qu'au foyer des plus grands télescopes. On trouvera dans le premier chapitre de cet article un rapide survol des principales utilisations actuelles de l'imagerie hyperspectrale.

Encore plus vaste est l'éventail des dispositifs permettant d'acquérir à la fois l'information spectrale et l'information spatiale. Cette diversité est due en partie à celle des techniques spectrométriques, mais aussi aux différentes manières de balayer une image. En effet, rares sont les instruments qui acquièrent en une seule exposition l'ensemble de l'information spectrale et spatiale. Il est donc le plus souvent nécessaire d'introduire un balayage temporel, balayage qui peut concerner la dimension spectrale, mais aussi la dimension spatiale. C'est ainsi que l'on obtient une classification des spectro-imageurs selon leur mode d'acquisition spatiale. On distinguera donc quatre grandes familles d'instruments :

  • les instruments en mode « monopoint » (« whiskbroom » en anglais), pour lesquels le champ de vue instantané se réduit à un point ;

  • les instruments en mode « à champ linéaire » (« pushbroom » en anglais), pour lesquels le champ de vue s'étend à une dimension ;

  • les instruments en mode « à trame pointée » (« staring », ou « framing » en anglais), pour lesquels le champ de vue s'étend à deux dimensions et reste fixe ;

  • les instruments en mode « à trame défilante » (« windowing » en anglais), pour lesquels le champ de vue s'étend à deux dimensions mais balaye la scène continûment dans une direction.

C'est cette distinction que nous avons adoptée pour présenter notre article, puisque le deuxième chapitre sera consacré aux instruments en mode monopoint, le troisième aux instruments à champ linéaire défilant, le quatrième aux instruments en mode à trame pointée, et le cinquième à ceux en mode à trame défilante. Ces quatre chapitres ont surtout pour but de faire comprendre les principes instrumentaux, de manière simple, sans entrer de manière excessive dans les détails de conception et de réalisation. Nous indiquons tout de même, à la fin de chaque chapitre, les conditions d'utilisation les plus propices pour chacun de ces modes d'acquisition, et, dans le chapitre de conclusion, nous donnons un tableau récapitulatif des points forts et des points faibles des principes instrumentaux décrits dans cet article.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-e4111


Cet article fait partie de l’offre

Optique Photonique

(223 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais English

3. Spectro-imageurs fonctionnant en mode à champ linéaire

Ces appareils ont un champ défini par une fente. Grâce à l'utilisation d'un détecteur matriciel, il est alors relativement simple de faire l'acquisition simultanée des spectres de tous les points de cette fente, en dédiant chaque colonne du détecteur au spectre d'un des points de la fente. Pour acquérir le reste de l'image, un balayage de la scène est nécessaire.

3.1 Spectro-imageurs dispersifs

HAUT DE PAGE

3.1.1 Schéma général

Dans ces spectro-imageurs, la fente d'entrée de l'instrument est conjuguée du plan image via un système disperseur, dont la direction de dispersion est perpendiculaire à la fente : grâce à cet élément dispersif, il se forme au niveau du plan de détection plusieurs images de la fente, décalées selon leur longueur d'onde. Une ligne du détecteur matriciel sera donc associée à une longueur d'onde et une colonne à un point de la scène (figure 2). Un déplacement du porteur dans la direction de dispersion permet d'acquérir ensuite l'image de la ligne suivante de la scène (figure 3).

HAUT DE PAGE

3.1.2 Choix de l'élément dispersif

Il existe deux grands types d'éléments dispersifs : les réseaux de diffraction, basés sur les interférences à ondes multiples, et les prismes, matériaux qui présentent une dispersion chromatique de l'indice de réfraction. On trouvera dans l'article R6310 les relations de base pour ces composants. Nous donnons quelques éléments pour guider le choix du composant dispersif, sachant que, bien évidemment, la meilleure solution dépend fortement des performances désirées pour l'instrument, et peut-être aussi du budget disponible…

HAUT...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Optique Photonique

(223 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Spectro-imageurs fonctionnant en mode à champ linéaire
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - AIKIO (Mauri) -   Hyperspectral prism-grating-prism imaging spectrograph.  -  2001 Thèse de doctorat. Université d'Oulu (disponible en janvier 2009 à l'adresse www.vtt.fi/inf/pdf/publications/2001/P435.pdf

  • (2) - CUTTER (Mike) et LOBB (Daniel R.) -   Design of the compact high-resolution imaging spectrometer (CHRIS), and future developments  -  Proceedings of the 5th International Conference on Space Optics ICSO (2004).

  • (3) - EVANS (John W.) -   The birefringent filter  -  Journal of the Optical Society of America 39 (3) p. 229-242 (1949).

  • (4) - EVANS (John W.) -   Sölc birefringent filter,  -  Journal of the Optical Society of America 48 (3) p. 142-145 (1958).

  • (5) - FERREC (Yann) -   Spectro-imagerie aéroportée par transformation de Fourier avec un interféromètre statique à décalage latéral : réalisation et mise en œuvre (2008)  -  Thèse de doctorat. Université Paris XI (disponible en janvier 2009 sur le serveur http://tel.archives-ouvertes.fr)

  • ...

DANS NOS BASES DOCUMENTAIRES

1 Sites Internet

Instrument VIRTIS (spectro-imageur visible et infrarouge embarqué dans la sonde Rosetta de l'Agence Spatiale Européenne) :

http://servirtis.obspm.fr/virtis.html (page consultée en janvier 2010)

Instrument M3 (spectro-imageur visible et infrarouge de la NASA embarqué dans la sonde Chandrayaan-1 de l'Indian Space Research Organization) :

https://www.techno-science.net/glossaire-definition/Chandrayaan-1.html (page consultée en janvier 2010)

Instrument APEX (spectro-imageur aéroporté développé pour l'Agence Spatiale Européenne) :

http://www.apex-esa.org/ (page consultée en janvier 2010)

Instrument MUSE (spectrographe intégral de champ pour le VLT) :

http://muse.univ-lyon1.fr/?lang=fr (page consultée en janvier 2010)

Télescope JWST (télescope spatial de la NASA, embarquant divers instruments dont des spectro-imageurs) :

http://www.jwst.nasa.gov/ (page consultée en janvier 2010)

HAUT DE PAGE

2 Annuaire

Constructeurs – Fournisseurs – Distributeurs (liste non exhaustive)

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Optique Photonique

(223 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS