Présentation
RÉSUMÉ
Cet article est consacré aux mémoires à semi-conducteurs, composants privilégiés dans bon nombre d’applications des télécommunications, mais aussi du grand public et de l’informatique. La technologie CMOS est la plus utilisée pour la réalisation de ces puces mémoires, car elle permet d’obtenir des densités d’intégration élevées avec des rendements industriels. La fabrication de ces circuits bénéficie ainsi de nombreux avantages, comme le recours à une fabrication collective, des processus de fabrication propres et l’obtention de performances élevées en vitesse. L’évolution de ces composants n’est pas prête de fléchir.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
Auteur(s)
-
Christophe FREY : Directeur engineering SOISIC
INTRODUCTION
Les mémoires à semi-conducteurs utilisent, comme les technologies des circuits intégrés, le silicium en tant que matériau de départ. Elles constituent un domaine privilégié où les progrès de l’intégration poussée se font sentir immédiatement. Elles ont représenté les premières applications des circuits intégrés complexes (LSI Large Scale Integration, 1 000 portes par circuit intégré) et constitueront encore des véhicules de choix pour la démonstration de faisabilité de circuits intégrés très complexes et comme composants tracteurs de la technologie.
Les avantages essentiels liés à la technologie des circuits intégrés sur silicium sont :
-
l’utilisation d’opérations de fabrication collectives qui diminuent les coûts de fabrication et ont permis par le passé de rendre ces mémoires compétitives en prix par rapport aux solutions magnétiques (tores) ; la tendance à une intégration plus poussée permet, de plus, d’abaisser les coûts associés au système (coûts des alimentations, des bâtiments, du fonctionnement, etc.) ;
-
la réalisation des circuits à partir d’opérations technologiques très propres, quelquefois sous vide (comme les métallisations) entraînant une amélioration de la fiabilité des composants et donc des systèmes, qui devient indispensable pour les ensembles très complexes ;
-
l’obtention de performances élevées en vitesse (temps d’accès lecture par exemple) par rapport aux solutions magnétiques, d’autant plus que ces performances s’améliorent en général lorsque le niveau d’intégration augmente (diminution des capacités parasites en diminuant les dimensions des composants) ;
-
l’effet d’entraînement réciproque lié à l’existence d’une production de circuits intégrés logiques qui contribue de toute façon à améliorer la qualité du matériau de départ, la technologie et les outils de conception, rendant ainsi plus performantes les technologies correspondantes, quelle que soit la part de marché prise par un domaine d’application particulier.
Par ailleurs, les très nombreuses recherches menées sur les semi-conducteurs, en général, font découvrir de nouveaux effets physiques permettant de repousser les limitations qu’ont les mémoires à semi-conducteurs par rapport aux mémoires magnétiques (disques durs, bandes magnétiques...) dans certains domaines. C’est le cas de la rétention non volatile de l’information dans une structure EPROM.
VERSIONS
- Version archivée 1 de déc. 1980 par Guy CONVERT
- Version archivée 2 de juin 1993 par Alain CAPPY
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Technologies de l'information > Technologies logicielles Architectures des systèmes > Architectures matérielles > Mémoires à semi-conducteurs > Technologie des mémoires
Cet article fait partie de l’offre
Électronique
(227 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Technologie des mémoires
La technologie choisie pour une classe de performances ou de fonctions données est celle qui permet d’obtenir les densités les plus élevées avec des rendements industriels. C’est la technologie CMOS qui est la plus utilisée car elle permet des densités d’intégration élevées et des consommations faibles.
3.1 Importance du rendement technologique
Les complexités visées actuellement sont au niveau de 1 Gbit par puce sur des surfaces de silicium de 1 à 4 cm2. En conséquence, la diminution des taux de défauts est impérative lorsque l’on va vers ces complexités élevées.
la figure 15 donne une comparaison des améliorations nécessaires pour produire des puces de 1 à 64 Mbits.
On constate qu’il faut diminuer les défauts d’au moins un facteur 10 quand on passe d’une mémoire de 1 Mbits à une mémoire de 64 Mbits.
On utilise une loi approchée du rendement technologique :
avec :
- Y :
- rendement de fabrication en circuits bons
- D :
- densité surfacique de défauts sur le silicium
- A :
- surface du circuit.
si l’on veut Y > 80 % pour A = 1 cm2 (4 Mbits, par exemple), on arrive à D < 0,25 défauts/cm2 (défauts de taille inférieure à 0,35 µm !).
Seule la technologie CMOS permet d’atteindre de tels niveaux ; la technologie bipolaire (ou BiCMOS) sera réservée aux produits de grande vitesse et de plus faible complexité.
Afin...
Cet article fait partie de l’offre
Électronique
(227 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Technologie des mémoires
BIBLIOGRAPHIE
-
(1) - BOUCHARLAT (G.) - Dispositifs à transfert de charges (CCD). - Techniques de l’Ingénieur. Traité électronique E 2 210 (2-2006).
-
(2) - HERNDON (W.), RAMIREZ (R.) - A 4096x1 static bipolar RAM. - ISSC Digest of technical papers, pp. 68-69 (fevr. 1977).
-
(3) - TOKUYOSHI (F.), TAKEMURA (H.), TASHIRO (T.), OHI (S.), SHIRAKI (H.), NAKAMAE (M.), KUBOTA (T.), NAKAMURA (T.) - A 2.3ns access time 4K ECL RAM. - ISSC Digest of technical papers, pp. 220-221 (fevr. 1984).
-
(4) - ARNAUD (F.), BŒUF (F.), SALVETTI (F.), LENOBLE (D.), WACQUANT (F.), REGNIER (C.), MORIN (P.), EMONET (N.), DENIS (E.), OBERLIN (J.C.), CECCARELLI (D.), VANNIER (P.), IMBERT (G.), SICARD (A.), PERROT (C.), BELMONT (O.), GUILMEAU (I.), SASSOULAS (P.O.), DELMEDICO (S.), PALLA (R.), LEVERD (F.), BEVERINA (A.), DEJONGHE (V.), BROEKAART (M.), PAIN (L.), TODESCHINI (J.), CHARPIN (M.), LAPLANCHE (Y.), NEIRA (D.), VACHELLERIE (V.), BOROT (B.), DEVOIVRE (T.), BICAÏS (N.), HINSCHBERGER (B.), PANTEL (R.), REVIL (N.), PARTHASARATHY (C.), PLANES (N.), BRUT (H.), FARKAS (J.), UGINET (J.), STOLK (P.), WOO (M.) - A Functional 0.69 µm2 Embedded 6T-SRAM bit cell for 65 nm CMOS platform. - 2003 symposium on VLSI technology.
-
...
Cet article fait partie de l’offre
Électronique
(227 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive