Présentation

Article

1 - LUMIÈRE, COULEUR ET ÉCLAIRAGE

2 - BASE DU PROCESSUS DE LUMINESCENCE

3 - MÉTHODES DE SYNTHÈSE ET CARACTÉRISATION DES LUMINOPHORES

4 - LES MATÉRIAUX LUMINESCENTS ET LEURS PROPRIÉTÉS OPTIQUES

5 - CHOIX DES MATÉRIAUX SUIVANT L'ÉNERGIE D'EXCITATION

6 - LA LUMINESCENCE AU SERVICE DU PHOTOVOLTAÏQUE (PV)

7 - NOUVEAUX PROCESSUS OPTIQUES POUR ACCROÎTRE L'EFFICACITÉ LUMINEUSE

8 - CONCLUSION

Article de référence | Réf : E6357 v1

Choix des matériaux suivant l'énergie d'excitation
Matériaux luminescents pour l'éclairage et le photovoltaïque

Auteur(s) : Bernard MOINE

Relu et validé le 16 juin 2017

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

Les matériaux luminescents émettent de la lumière colorée après avoir absorbé de l’énergie d’une source excitatrice. Ce sont des convertisseurs d'énergie dans le domaine des fréquences optiques. On les emploie pour l'éclairage, la visualisation et ils seront utilisés dans les cellules solaires de demain. L’objectif de cet article est d’expliquer les processus physiques impliqués dans le phénomène de luminescence, comment on les étudie et quelles sont les nouvelles propriétés que l’on cherche à exacerber, compte tenu des nouvelles applications envisagées. Une première partie sera consacrée aux processus de base, puis une seconde aux méthodes de synthèse et de caractérisation et la fin de l’article sera consacrée aux applications dans le domaine de l’éclairage et des cellules solaires

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Bernard MOINE : Directeur de recherche au CNRS - Docteur ès Science physique - Institut Lumière Matière - UMR 5306 du CNRS, Lyon 1, France

INTRODUCTION

En ce qui concerne les applications des luminophores, de nouvelles technologies d'affichage et d'éclairage comme les écrans électroluminescents, les écrans à plasma et les écrans à micropointes, les lampes fluorescentes sans mercure, les diodes électroluminescentes (DEL) ont été, depuis les années 1990, à l'origine de recherches de nouveaux matériaux plus performants que ceux disponibles auparavant sur le marché. Les applications classiques qui utilisent les luminophores peuvent être classées en quatre catégories :

  • les sources de lumière que sont les lampes fluorescentes ou les DEL ;

  • les écrans d'affichage ;

  • les détecteurs de rayons X ;

  • l'ensemble des applications de marquage comme les peintures phosphorescentes, les marquages de timbres ou de billets de banque, etc.

De plus, des recherches se sont développées depuis quelques années pour intégrer des luminophores aux cellules solaires afin d'en accroître le rendement de conversion lumière/courant.

Il ne s'agit pas de dresser dans cet article une liste exhaustive de matériaux luminescents avec leurs caractéristiques (ce qui serait fastidieux) mais plutôt d'expliquer les processus physiques impliqués dans le phénomène de luminescence, comment on les étudie et quelles sont les nouvelles propriétés que l'on cherche à exacerber, compte tenu des nouvelles applications développées. Nous limiterons nos propos aux matériaux inorganiques bien qu'il existe des matériaux organiques fluorescents (fluorophores) principalement utilisés en biochimie et dans le domaine médical. Nous ne parlerons pas non plus des « quantum dots » (nanocristaux de semi-conducteurs) dont les émissions lumineuses trouvent des applications dans des domaines très variés (éclairage, photovoltaïque, biologie). Ils font, depuis une dizaine d'années, l'objet de nombreuses études et nécessiteraient un article à eux seuls. Le but de cet article est de montrer comment sélectionner les matériaux, les ions luminescents et leur comportement en fonction de la source excitatrice utilisée pour une application donnée.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-e6357


Cet article fait partie de l’offre

Optique Photonique

(222 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais English

5. Choix des matériaux suivant l'énergie d'excitation

Le choix d'un luminophore dépend de la source d'excitation que l'on veut utiliser. Un matériau efficace sous excitation ultraviolette ne l'est pas nécessairement sous une excitation plus énergétique bien que l'on puisse penser, a priori, que plus l'énergie absorbée est élevée et plus on aura d'énergie émise.

5.1 Excitation haute énergie (ultraviolet du vide)

La recherche de luminophores adaptés à une excitation dans l'ultraviolet du vide (VUV) a été motivée à la fois par le développement des écrans d'affichage et de vidéo à plasma ainsi que par la volonté de trouver un moyen de supprimer le mercure (Hg) très polluant dans les lampes à décharge. Un mélange Xe-Ne peut convenir, mais son émission a lieu principalement à 147 et 172 nm. Les photons VUV sont plus absorbés par la matrice que par les ions dopants et le transfert d'énergie de la matrice vers les niveaux excités des ions luminescents n'est pas toujours très efficace. L'absorption de la matrice se fait par création de paires électron-trou qui peuvent soit se recombiner directement en donnant des photons d'énergie UV, soit être piégées par des impuretés du matériau et ce d'autant plus que l'absorption a lieu dans une fine couche superficielle dans laquelle il y a une densité de défauts élevée. De plus, les transferts n'ayant jamais lieu avec un rendement de 100 %, l'efficacité de l'excitation VUV reste plus faible.

Actuellement, on utilise globalement les mêmes matériaux, que l'excitation soit dans l'ultraviolet du vide (VUV) ou dans l'ultraviolet (UV). Cependant, cela pose des problèmes à la fois de rendement lumineux et de longévité. D'où le besoin de développer de nouveaux matériaux luminophores. Pour compenser l'efficacité moindre des photons VUV, on peut augmenter l'intensité d'excitation, mais cela moyennant un coût énergétique non négligeable. D'autre part, si le rayonnement VUV devient trop intense, il peut provoquer une dégradation accélérée du luminophore (vieillissement). Cela peut être préjudiciable à la qualité de l'éclairage si ce vieillissement n'est pas du même ordre de grandeur pour les différents matériaux utilisés dans une même lampe par exemple. On observe alors une dérive plus ou moins rapide de la couleur de la lumière émise. Des études ont montré que les matériaux émettant dans la partie bleue...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Optique Photonique

(222 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Choix des matériaux suivant l'énergie d'excitation
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - SHIONOYA (S.), YEN (W.M.) -   Phosphor handbook.  -  CRS Press LLC ed. (1999).

  • (2) - VALEUR (B.) -   La couleur dans tous ses éclats.  -  Belin : Pour la science (2011).

  • (3) - BERTHIER (S.) -   Iridescences : les couleurs physiques des insectes.  -  Springer (2003).

  • (4) - TANABE (Y.), SUGANO (S.) -   *  -  J. Phys. Soc. Jpn., 9(5), p. 753 (1954) ; ibid 766 ; J. Phys. Soc. Jpn., 11(8), p. 864 (1954).

  • (5) - DIEKE (G.H.) -   Spectra and energy levels of rare-earth ions in crystals.  -  Interscience Publishers, 401 p. (1968).

  • (6) - BLASSE (G.), GRABMAIER (B.C.) -   Luminescent materials.  -  Springer-Verlag, 232 p. (1994).

  • ...

1 Sites Internet

Association française de l'éclairage http://www.afe-eclairage.com.fr

Système d'information géographique photovoltaïque – carte interactive https://ec.europa.eu/commission/presscorner/detail/fr/IP_07_447 (consulté le 28 avril 2014)

Cellule photovoltaïque http://fr.wikipedia.org/wiki/Photoélectricité (consulté le 28 avril 2014)

Portail Solaire : annuaire de l'énergie solaire en France http://www.portail-solaire.com

HAUT DE PAGE

2 Annuaire

HAUT DE PAGE

2.1 Quelques laboratoires ou centres de recherche (liste non exhaustive)

Institut national de l'énergie solaire http://www.ines-solaire.org

Institut de recherche et développement sur l'énergie photovoltaïque (IRDEP) http://www.irdep.cnrs-bellevue.fr

Laboratoire de physique des interfaces et couches minces http://www.lpicm.polytechnique.fr

Institut d'électronique du solide et des systèmes http://www.iness.c-strasbourg.fr

Institut...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Optique Photonique

(222 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS