Présentation
En anglaisRÉSUMÉ
Les résonateurs diélectriques sont des éléments de base pour les circuits hyperfréquences comprenant des filtres, des oscillateurs. Cet article présente la fabrication des résonateurs diélectriques en commençant par la caractérisation de la permittivité, du facteur de qualité et de la stabilité thermique, continuant avec le procédé d’élaboration céramique. Ensuite des critères de sélection sont donnés, ainsi que des références du marché. L’origine physique de la permittivité du matériau est introduite avec des listes de matériaux et diagrammes chimiques. Il se termine par la mise en œuvre du résonateur diélectrique utilisé dans le mode TE01d , et des exemples d’oscillateur et de filtres.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
Dielectric resonators are essential elements for microwave circuitry, including filters and oscillators. This article presents the fabrication of dielectric resonators, beginning with the characterization of the permittivity, the quality factor and the thermal stability, continuing with the ceramic manufacturing process. Then selection criteria are given, and market references. The physical origin of permittivity is introduced with some material lists and chemical diagrams. Its ends with the operating way of dielectric resonator used in the TE01d modes, and examples of oscillator and filters
Auteur(s)
-
Pierre FILHOL : Ingénieur ESPCI - Exxelia Temex, Pessac, France
INTRODUCTION
Dans l’article [E1920], les résonateurs diélectriques ont été présentés en remplacement des cavités métalliques dans les circuits micro-ondes, comme éléments résonnants. Ils entrent dans la réalisation d’oscillateurs ou de filtres et sont employés suivant divers modes électromagnétiques de type TE, TM, TEM. Dans cet article, la caractérisation des propriétés des résonateurs diélectriques est donnée. Effectuée par le fabricant, elle lui permet d’améliorer ces propriétés au bénéfice de l’utilisateur, soit : permittivité élevée pour une plus grande miniaturisation, facteur de qualité élevé pour l’obtention d’une haute pureté spectrale d’un oscillateur ou un minimum de pertes d’insertion d’un filtre, coefficient de température ajustable. Cela se fait par l’étude des compositions chimiques et du procédé céramique comprenant le mélange intime des éléments, matières premières, oxydes ou carbonates pulvérulents, cela en général par voie liquide, puis les conditions de frittage, dont les températures et l’atmosphère oxydante. Les formulations qui sont présentées ont été déterminées à partir d’oxydes simples comme l’alumine Al2O3 ou l’oxyde de titane TiO2 de permittivité respectivement ~10 et ~100, et d’autres oxydes de baryum, zirconium, étain, tantale, niobium, terres rares comme le samarium, le néodyme, etc. Ces formulations non triviales permettent d’avoir un bon compromis entre une stabilité thermique en fréquence améliorée, de quelques 10–6/K, et des pertes diélectriques suffisamment faibles, inférieures à 10–3 ou, en équivalence, des facteurs de qualité supérieurs à 1 000 jusqu’à des dizaines de milliers. Quelques éléments de mise en œuvre dans les circuits sont donnés.
KEYWORDS
microwaves | ceramics | resonators titanates tantalates
VERSIONS
- Version archivée 1 de nov. 2004 par Pierre FILHOL
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Électronique
(227 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Sélection de matériaux diélectriques
3.1 Coefficient de stabilité thermique de la fréquence
Ce coefficient τf nommé TCF en anglais, pour Temperature Coefficient of Frequency, est primordial pour les dispositifs. Les matériaux naturels comme l’alumine, les silicates, l’oxyde de titane ont des coefficients de température en valeur absolue de plusieurs dizaines de ppm/K ; ainsi l’utilisateur doit choisir le matériau dont le τf lui permet de réaliser un dispositif dont la fréquence varie le moins possible dans sa gamme de température. Le résonateur ne définit pas à lui seul cette stabilité qui est modifiée par les autres éléments du circuit (l’élément actif de l’oscillateur, la cavité, etc.). La variation de fréquence en température du résonateur doit compenser celle de l’environnement (voir exemple de mise en œuvre § 7.1). Il est donc souhaitable de proposer des coefficients τf :
-
modulables entre des valeurs négatives de quelques ppm/K jusqu’à une dizaine ou plus de ppm/K ;
-
définis à ± 1 ppm/K ;
-
constants sur la plage de température, c’est-à-dire avec un coefficient de non-linéarité b le plus faible possible (quelques 10–9/K2).
3.2 Permittivité relative réelle et facteur de qualité
Depuis la découverte du résonateur diélectrique en mode TE01 δ ou TEM, ou TM, la recherche de matériaux permet de disposer aujourd’hui d’une gamme de permittivités relatives comprises entre 20 et 100 (voir tableau 1). En fonction des applications, du mode de fonctionnement donc du type de résonateur (métallisé ou non) et de la fréquence...
Cet article fait partie de l’offre
Électronique
(227 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Sélection de matériaux diélectriques
BIBLIOGRAPHIE
-
(1) - HAKKI (B.W.), COLEMAN (P.D.) - A dielectric resonator method of measuring inductive capacities. - IRE Trans MTT, no 8, p. 402-10, juil. 1960.
-
(2) - COURTNEY (W.E.) - Analysis and evaluation of a method of measuring the complex permittivity and permeability of microwave insulators. - IEEE Transactions on Microwave Theory and Techniques, MTT-18, no 8, août 1970.
-
(3) - KOBAYASHI (Y.), KATOH (M.) - Microwave measurement of dielectric properties of low-loss materials by the dielectric rod resonator method. - IEEE Transactions on Microwave Theory and Techniques, MTT-33, no 7, p. 586-592, juil. 1985.
-
(4) - KOBAYASHI (Y.), TAMURA (H.) - Round robin test on a dielectric resonator method for measuring complex permittivity at microwave frequency. - IEICE TRANS. ELECTRON., n° E77-C. 6 June, p.882-886 (1994).
-
(5) - PLOURDE (J.K.), LINN (D.F.), O’BRIAN (H.M.), THOMSON (J.) - Ba2Ti9O20 as a microwave dielectric resonator. - J. Am. Ceram. Soc. 58, n° 9-10,...
DANS NOS BASES DOCUMENTAIRES
NORMES
-
Normalisation des matériaux et résonateurs diélectriques pour filtres et oscillateurs - Projet de norme 49 (sec) 268 -
Laboratoires – Bureaux d’études – Écoles – Centres de recherche (liste non exhaustive)
Laboratoire Universitaire des Sciences Appliquées ( http://www.chbg.unicaen.fr/lusac)
HAUT DE PAGE2 Données statistiques et économiques
HAUT DE PAGE
Cet article fait partie de l’offre
Électronique
(227 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive