Présentation
EnglishRÉSUMÉ
Les matériaux magnétiques ont par le passé révolutionné le stockage de l’information par l’intermédiaire des disques durs magnétiques. L’intérêt pour les matériaux magnétiques continue de croître, notamment à cause de la miniaturisation des dispositifs et de la quête des composants non volatils, robustes, compacts et économes en énergie. Dans cet article, les concepts de base des matériaux magnétiques sont passés en revue, de l’état massif aux nanostructures. Les propriétés statiques et dynamiques sont dressées, les mécanismes non conventionnels pour manipuler l’aimantation, tels que l’application d’un fort courant, sont explicités et le potentiel applicatif est indiqué.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Hélène BEA : Enseignante-chercheuse - Université Grenoble Alpes, CEA, CNRS, - Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), INAC-SPINTEC, - Grenoble, France
-
Liliana D. BUDA-PREJBEANU : Enseignante-chercheuse - Université Grenoble Alpes, CEA, CNRS, - Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), INAC-SPINTEC, - Grenoble, France
INTRODUCTION
Les matériaux magnétiques suscitent depuis longtemps un fort intérêt de par leurs multiples applications. À l’origine, les matériaux ferromagnétiques ont été utilisés principalement en électrotechnique en tant que source de champ magnétique ou comme élément de base des machines et dispositifs électriques (transformateurs, moteurs, composants inductifs pour l’électronique). Cependant, la conception de disques durs magnétiques a révolutionné le monde du stockage des données et orienté la recherche vers des systèmes magnétiques de plus en plus petits. Les propriétés des matériaux magnétiques sont intimement liées à leur taille. Les effets dus aux phénomènes d’interface et à l’association de divers matériaux permettent de modifier de manière importante le comportement magnétique de nanostructures.
Cet article insiste sur le rôle du confinement latéral et des interfaces avec d’autres matériaux sur les propriétés des systèmes ferromagnétiques. Il présente également leurs exploitations dans diverses applications allant de la technologie de l’information aux biotechnologies. La nanostructuration a permis également la mise en évidence de l’interaction mutuelle entre l’aimantation et le spin des électrons de conduction. Cette interaction est la base des phénomènes dits spintroniques qui ont rendu possible le contrôle de l’aimantation autrement que par l’intermédiaire d’un champ magnétique. Diverses manières non conventionnelles de manipuler l’aimantation sont présentées en s’appuyant sur l’équation de mouvement de l’aimantation.
Le lecteur trouvera en fin d'article un glossaire et un tableau des symboles utilisés.
MOTS-CLÉS
VERSIONS
- Version archivée 1 de juin 1989 par Jean-Louis PORTESEIL
- Version archivée 2 de févr. 1998 par Jean-Pierre NOZIÈRES
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Innovation > Nanosciences et nanotechnologies > Nanomatériaux : propriétés > Ferromagnétisme à l’échelle nanométrique > Utilisation des ferromagnétiques pour la spintronique
Accueil > Ressources documentaires > Sciences fondamentales > Nanosciences et nanotechnologies > Nanomatériaux : propriétés > Ferromagnétisme à l’échelle nanométrique > Utilisation des ferromagnétiques pour la spintronique
Accueil > Ressources documentaires > Matériaux > Matériaux fonctionnels - Matériaux biosourcés > Matériaux magnétiques > Ferromagnétisme à l’échelle nanométrique > Utilisation des ferromagnétiques pour la spintronique
Cet article fait partie de l’offre
Électronique
(228 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
4. Utilisation des ferromagnétiques pour la spintronique
La manière classique de manipuler l’aimantation d’un système ferromagnétique s’appuie sur l’application d’un champ magnétique externe combiné à la variation éventuelle de la température. Plus récemment, l’interaction entre un courant électrique polarisé en spin (composé d’électrons avec un nombre différent de spins vers le haut et de spins vers le bas) et l’aimantation s’est avérée être tout aussi efficace dans le contrôle de l’état magnétique. D’un côté, l’aimantation agit sur les électrons de conduction avec un impact direct sur la résistance du système ; il s’agit des phénomènes de magnétorésistance [E 2 135] qui servent à la détection de l’état magnétique. D’un autre côté, l’effet réciproque se manifeste aussi ; les électrons de conduction agissent sur l’aimantation via des couples qui font que l’aimantation subit des modifications telles qu’un renversement de son orientation ou une précession entretenue. L’interaction mutuelle entre le courant polarisé en spin et l’aimantation est à la base de nombreuses applications en spintronique, ou électronique de spin qui tirent parti non seulement de la charge de l’électron, mais également de son spin.
D’autres méthodes d’écriture de l’aimantation sont également décrites ici. L’interaction spin-orbite qui intervient dans des structures de type métal lourd/ferromagnétique 3d/oxyde permet par injection d’un courant dans le métal lourd de modifier l’aimantation de la couche ferromagnétique. Il est également possible de changer les propriétés magnétiques par l’application d’une tension électrique, et donc avec une très faible consommation électrique. Enfin, des méthodes optiques pour contrôler l’aimantation sont également développées, basées sur l’interaction de l’aimantation et d’un faisceau de lumière polarisée circulairement.
La...
TEST DE VALIDATION ET CERTIFICATION CerT.I. :
Cet article vous permet de préparer une certification CerT.I.
Le test de validation des connaissances pour obtenir cette certification de Techniques de l’Ingénieur est disponible dans le module CerT.I.
de Techniques de l’Ingénieur ! Acheter le module
Cet article fait partie de l’offre
Électronique
(228 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Utilisation des ferromagnétiques pour la spintronique
BIBLIOGRAPHIE
-
(1) - DU TREMOLET DE LACHEISSERIE (E.) - Magnétisme-Fondements. - EDP Sciences (1999).
-
(2) - OHNO (H.) - Making Semiconductors Ferromagnetic. - Science, 281, p 951 (1998).
-
(3) - JUNGWIRTH (T.), SINOVA (J.), MAŠEK (J.), KUČERA (J.), MACDONALD (A.H.) - Theory of ferromagnetic (III, Mn)V semiconductors. - Rev. Mod. Phys. 78, 809 (2006).
-
(4) - GRADMANN (U.) - Magnetism in ultrathin transition metal films. - in K.H.J.Buschow (Ed.), Handbook of magnetic materials, vol 7, Elsevier Science Publishers B.V., North Holland, Ch1, pp 1-96 (1993).
-
(5) - THIAVILLE (A.), ROHART (S.), JUÉ (E.), CROS (V.), FERT (A.) - Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films Europhys. - Lett. 100, 57 002 (2012).
-
(6) - AHARONI (A.) - Introduction...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
Journée de la Matière Condensée, Grenoble, 27-31 Août 2018
( https://jmc2018.sciencesconf.org)
Colloque Louis Néel, 14-17 Mai 2019, Toulouse
( https://www.sciencesconf.org/browse/conference/?confid=5388)
HAUT DE PAGE
Plus de 4 500 brevets existent sur les MRAMs, en voici quelques exemples :
-
High speed magneto-resistive random access memory, J.C. Wu, H.L. Stadler, R.R. Katti, US5173873 (1992) ;
-
Magnetic memory with a thermally assisted writing procedure, J.P. Nozières, I.L.Prejbeanu, TW200937415 (2009) ;
-
Magnetic memory device, C. Heide, US6639830 (2003) ;
-
Self-referenced Memory device and method for operating the memory device, S. Bandiera, US2016232958 (2016) Magnetic racetrack memory device, J.P. Moriya, S. Parkin, L. Thomas, US7626844, (2011) ;
-
Non-volatile magnetic memory cell and devices, A. Gupta, R.V. Rajiv, US6034887 (2000).
D’autres...
Cet article fait partie de l’offre
Électronique
(228 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
QUIZ ET TEST DE VALIDATION PRÉSENTS DANS CET ARTICLE
1/ Quiz d'entraînement
Entraînez vous autant que vous le voulez avec les quiz d'entraînement.
2/ Test de validation
Lorsque vous êtes prêt, vous passez le test de validation. Vous avez deux passages possibles dans un laps de temps de 30 jours.
Entre les deux essais, vous pouvez consulter l’article et réutiliser les quiz d'entraînement pour progresser. L’attestation vous est délivrée pour un score minimum de 70 %.
Cet article fait partie de l’offre
Électronique
(228 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive