Article de référence | Réf : E1020 v1

Équation d’ondes
Bases de l’électromagnétisme

Auteur(s) : Michel NEY

Relu et validé le 05 janv. 2021

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

Auteur(s)

  • Michel NEY : Institut Mines-Télécom, TELECOM Bretagne, Brest, France

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

Les phénomènes électromagnétiques ont été longtemps négligés voire ignorés. La raison est due au fait que les systèmes ont longtemps opéré à des fréquences relativement basses pour lesquelles la longueur d’onde était bien plus grande que leurs dimensions. C’est donc tout d’abord dans le domaine des machines électriques que l’on s’est mis à chercher le moyen de résoudre les équations de type Laplace ou de Poisson qui régissent les champs en électrostatique et magnétostatique. Ces équations sont les formes statiques de l’équation d’ondes et permettent de déterminer les champs (ou plus généralement les potentiels associés) dans les structures puis d’en déduire les distributions de charges ou de courants. En ce qui concerne les circuits, les lemmes de Kirchhoff ont depuis longtemps été introduits dans des logiciels sophistiqués qui permettent de résoudre des circuits d’une grande complexité. Dans ce cas, les éléments sont localisés et il n’est nul besoin pour l’ingénieur de connaître les phénomènes liés à l’électromagnétisme pour concevoir le schéma du circuit et ensuite l’analyser et prédire ses performances. Les phénomènes de rayonnement et couplage étaient plutôt le problème des ingénieurs s’occupant des antennes ou de la propagation des ondes dans divers milieux ou structures.

Pourtant, les concepteurs de dispositifs ont été très vite confrontés à des problèmes liés à deux contraintes. L’augmentation des débits numériques et des fréquences opérationnelles et la miniaturisation des dispositifs pour en réduire leur encombrement et leur poids. C’est alors qu’apparaissent les premiers symptômes remettant en question les modèles traditionnels pour la conception des circuits. Les éléments non seulement ne sont plus des inductances, capacités ou résistances pures mais les interconnexions deviennent des lignes de transmission qui introduisent des retards, des pertes et de la dispersion (distorsion des signaux). De plus, les couplages entre lignes et/ou éléments sont à prendre en compte pour éviter des prédictions de performances erronées. Finalement, les signaux qui se propagent dans les dispositifs ne sont plus assimilables à une tension (ou un courant) localisée, communément utilisée en circuit, mais plutôt à des ondes dont la théorie des lignes constitue une première approximation. D’une manière plus générale, la présence de discontinuités favorise la génération de modes supérieurs qui provoquent des réflexions et un rayonnement dans le cas de structures ouvertes. Tous ces phénomènes doivent être pris en compte plus ou moins rigoureusement dans de nombreux domaines du génie électrique :

  • caractérisation de guides (situations pour lesquelles le concept de lignes doit être abandonné) ;

  • caractérisation de discontinuités (aussi la prise en compte de l'effet de répartition des éléments localisés) ;

  • couplage en champs proches, interférences électromagnétiques et CEM (compatibilité électromagnétique) ;

  • évaluation du rayonnement, antennes, SER (surface équivalente radar) ;

  • propagation (réseaux radios intra-muraux ou non).

Cette liste est loin d’être exhaustive et d’autres applications pourraient être mentionnées comme la diffusion par des objets soumis à un rayonnement, imagerie d’objets (problème inverse), optique, caractérisation des matériaux, applications industrielles et biomédicales des ondes.

Ce constat nous fait prendre conscience de l’importance de l’électromagnétisme. Dans toutes les applications mentionnées, une solution réside tout d’abord dans la résolution des équations régissant le champ électromagnétique dont la forme fondamentale a été proposée par Maxwell en 1865. Si celui-ci a eu le génie d’assembler sous la forme d’équations les phénomènes observés expérimentalement, il ne nous a malheureusement pas donné la recette pour les résoudre. Alors que l’activité consistant à essayer de résoudre ces équations a longtemps paru comme un exercice purement académique, elle est devenue un exercice de plus en plus incontournable pour l’analyse et la conception de beaucoup de dispositifs, ce qui est devenu possible avec le développement de méthodes numériques et l’évolution de la puissance des calculateurs. Cependant, l’exigence en termes de coût de calcul est encore prohibitive pour beaucoup de cas. Malgré un doublement des performances des calculateurs tous les six mois durant ces dernières années, la complexité des problèmes croît au même rythme. C’est pourquoi, il existe toujours une intense activité de recherche autour du calcul électromagnétique pour augmenter les performances des modèles.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-e1020


Cet article fait partie de l’offre

Technologies radars et applications

(69 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais English

2. Équation d’ondes

Après l’introduction des relations constitutives, les équations de Maxwell mettent en jeu au moins les sources et deux grandeurs de champ. En faisant des manipulations relativement simples sur les opérateurs, il est possible d’éliminer l’un des champs et d’obtenir une équation d’ondes. Cependant, lorsqu’il existe des distributions de sources dans le volume de calcul, il n’est pas possible de réduire ces équations sous cette forme, sans introduire les potentiels.

2.1 Équation d’ondes homogène

Considérons un milieu, linéaire, isotrope, homogène, sans distributions de charges (on remarquera qu’en vertu de la loi de conservation de la charge [10], cette condition impose J _ =0 ) et dans le cas du régime permanent sinusoïdal. Nous pouvons éliminer H _ de l’équation Maxwell-Faraday [15] en prenant, dans un premier temps, le rotationnel des deux membres et en introduisant l’équation [19] :

...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

TEST DE VALIDATION ET CERTIFICATION CerT.I. :

Cet article vous permet de préparer une certification CerT.I.

Le test de validation des connaissances pour obtenir cette certification de Techniques de l’Ingénieur est disponible dans le module CerT.I.

Obtenez CerT.I., la certification
de Techniques de l’Ingénieur !
Acheter le module

Cet article fait partie de l’offre

Technologies radars et applications

(69 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Équation d’ondes
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - NEY (M.) -   L’électromagnétisme : Son passé et son avenir dans les télécommunications.  -  Édition spéciale : Progrès récents en électromagnétisme appliqués aux télécommunications, Annales des Télécommunications, vol. 54, no 1-2, p. 4-18 (1999).

  • (2) - PURCELL (E.M.) -   Électricité et magnétisme.  -  Berkeley : cours de physique, vol. 2, Armand Colin, Paris (1973).

  • (3) - JOHNSON (C.C.) -   Field and Waves Electrodynamics.  -  McGraw-Hill, chap. 2 (1962).

  • (4) - GARDIOL (F.) -   Électromagnétisme.  -  Traité d’électricité, vol. III, Éditions Georgi, St-Saphorin (1977).

  • (5) - FOURNET (G.) -   Électromagnétisme. Différents aspects.  -  D 1 023 Traité Génie électrique, déc. 1992.

  • ...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Technologies radars et applications

(69 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Sommaire

QUIZ ET TEST DE VALIDATION PRÉSENTS DANS CET ARTICLE

1/ Quiz d'entraînement

Entraînez vous autant que vous le voulez avec les quiz d'entraînement.

2/ Test de validation

Lorsque vous êtes prêt, vous passez le test de validation. Vous avez deux passages possibles dans un laps de temps de 30 jours.

Entre les deux essais, vous pouvez consulter l’article et réutiliser les quiz d'entraînement pour progresser. L’attestation vous est délivrée pour un score minimum de 70 %.


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Technologies radars et applications

(69 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS