Présentation
EnglishAuteur(s)
-
Jean-Michel MERMET : Ingénieur de l’École nationale supérieure de chimie de Strasbourg - Docteur ès sciences - Directeur de recherche au CNRS Laboratoire des sciences analytiques de l’université Claude-Bernard (Lyon I)
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
De nombreuses méthodes d’analyse élémentaire sont fondées sur l’utilisation de spectres de raies atomiques. On peut citer la spectrométrie d’ émission atomique avec comme sources de radiation possibles la flamme, l’arc, l’étincelle, la décharge luminescente et les plasmas (en particulier les plasmas à couplage inductif ou ICP), la spectrométrie d’ absorption atomique avec comme sources d’atomisation la flamme et le four, et la spectrométrie de fluorescence atomique. Pour pouvoir utiliser une raie d’un spectre, il est nécessaire de pouvoir l’isoler à l’aide d’un système qui va disperser la lumière en fonction de la longueur d’onde . Si les deux derniers types de spectrométrie permettent de s’affranchir presque totalement des interférences spectrales, il n’en est pas de même pour la spectrométrie d’émission. Il faut alors que la raie sélectionnée pour l’analyse soit séparée des autres raies présentes dans le spectre d’émission. Le rôle du système dispersif devient alors crucial, en particulier au niveau de la versatilité de la sélection de la raie suivant le problème analytique, de la résolution permettant de séparer la raie et du domaine de longueurs d’onde accessible par le système. Les différents types de spectromètre, les réseaux de diffraction, plan, concave, échelle, avec leurs propriétés, les différents montages optiques, les concepts de résolution théorique et pratique, et la mesure de l’intensité nette d’une raie spectrale seront décrits dans cet article.
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Mesures - Analyses > Techniques d'analyse > Spectrométrie atomique et spectrométrie moléculaire > Systèmes dispersifs en spectrométrie atomique > Mesure de l’intensité nette d’une raie d’analyse
Cet article fait partie de l’offre
Optique Photonique
(223 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
7. Mesure de l’intensité nette d’une raie d’analyse
Afin de tenir compte d’éventuelles variations du fond, surtout quand celui-ci est important comme dans le cas d’un plasma du type ICP, il peut être nécessaire de mesurer précisément l’intensité nette, c’est-à-dire corrigée du fond ( background ), de la raie d’analyse. Dans tous les cas, il est nécessaire de mesurer l’intensité brute. Pour cela, soit la bande passante est plus petite que la largeur physique de la raie, et il faut donc que la bande spectrale soit située au maximum de la raie, soit la bande passante est plus large que la raie, et il suffit que la raie soit incluse dans la bande spectrale. Ce dernier cas est le plus général. Il est également nécessaire de mesurer l’intensité du fond pour pouvoir ensuite la déduire de l’intensité brute afin d’obtenir l’intensité nette. Il faut considérer deux cas : celui du polychromateur et celui du monochromateur.
7.1 Polychromateur à fentes fixes
Dans le cas d’un polychromateur, la largeur de la fente de sortie est suffisante pour obtenir une bande passante qui va inclure le profil total de la raie et permettre de s’affranchir d’éventuelles dérives. Il reste à considérer le problème de la correction de fond. La méthode logique serait de passer un blanc (c’est-à-dire une solution contenant tous les éléments sauf l’analyte) et de mesurer à la même longueur d’onde que la raie d’analyse l’intensité du fond. Le temps de rinçage entre deux solutions étant jugé prohibitif et le fait qu’il peut être difficile de reconstituer le blanc expliquent que la méthode de correction de fond s’effectue à l’aide de la solution d’analyse. Le fond sera mesuré au moins d’un côté de la raie, sinon des deux côtés, la valeur du fond correspondant à la longueur d’onde de la raie d’analyse étant obtenue par interpolation, généralement linéaire. Dans le cas d’un polychromateur, la mesure du fond sera généralement obtenue par un microdéplacement de la fente d’entrée, comme dans le cas de certains monochromateurs à réseau concave ou par rotation d’une lame à faces parallèles située derrière la fente d’entrée, ce qui revient à un microdéplacement de la fente d’entrée. La mesure du fond pouvant s’effectuer à des positions différentes suivant la raie d’analyse, une telle correction ralentit fortement...
Cet article fait partie de l’offre
Optique Photonique
(223 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Mesure de l’intensité nette d’une raie d’analyse
BIBLIOGRAPHIE
-
(1) - ZANDER (A.T.), MILLER (M.H.), HENDRICK (M.S.), EASTWOOD (D.) - Spectral efficiency of the Spectraspan III Echelle grating spectrometer. - Appl. Spectrosc. 39, p. 1 (1985).
-
(2) - BILHORN (R.B.), BONNER DENTON (M.) - Elemental analysis with a plasma emission echelle spectrometer employing a charge injection device (CID) detector. - Appl. Spectrosc. 43, p. 1 (1989).
-
(3) - PILON (M.J.), BONNER DENTON (M.), SCHLEICHER (R.G.), MORAN (P.M.), SMITH, Jr (S.B.) - Evaluation of a new array detector atomic emission spectrometer for inductively coupled plasma atomic emission spectrometry. - Appl. Spectrosc. 44, p. 1613 (1990).
-
(4) - SCHEELINE (A.), BYE (C.A.), MILLER (D.L.), RYNDERS (S.W.), CLAVIN OWEN Jr (R.) - Design and characterization of an echelle spectrometer for fundamental and applied emission spectrochemistry. - Appl. Spectrosc. 45, p. 334 (1991).
-
(5) - BARNARD (T.W.), CROCKETT (M.J.), IVALDI (J.C.), LUNDBERG (P.L.) - Design and evaluation of an echelle grating optical system for ICP-OES. - Anal. Chem. 65, p. 1225 (1993).
-
...
ANNEXES
1.1 Constructeurs d’ensembles source de rayonnement et système dispersifs
GBC
Hitachi
Jobin-Yvon/Horiba
Leeman
Perkin-Elmer Instruments
Shimadzu
Spectro Analytical
Thermo Optek
Varian, Inc
HAUT DE PAGE1.2 Constructeurs de systèmes dispersifs
Jobin-Yvon/Horiba
Acton Research
HAUT DE PAGECet article fait partie de l’offre
Optique Photonique
(223 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive