Présentation
Auteur(s)
-
Yves COJAN : Ingénieur de l’École Supérieure d’Optique - Ingénieur à Thomson TTD optronique - Professeur à l’École Nationale Supérieure des Techniques Avancées et à l’École de l’Air
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
avec la participation pour le paragraphe 8 de Jean‐Claude FONTANELLA Ingénieur de l’École Supérieure d’Optique Ingénieur à Thomson TTD optronique
Pour concevoir un système optronique dont le capteur se trouve être éloigné de la source, l’un des paramètres importants est la transmission spectrale du milieu de propagation atmosphérique. Elle est affectée principalement par l’absorption et la diffusion du rayonnement par ce milieu, sources principales d’interactions entre la lumière et la matière.
Les performances de tout système optronique sont déterminées en effet non seulement par ses caractéristiques techniques intrinsèques résultant de sa conception et de la technologie utilisée, mais aussi par son comportement dans l’environnement d’emploi opérationnel qui concerne le système. Ainsi :
-
à la conception ou durant le développement, il est important de connaître comment ces capteurs se comporteront vis‐à‐vis de telle ou de telle situation climatique ou météorologique ;
-
à l’utilisation, il est utile de savoir comment les caractéristiques nominales de ces capteurs varient en fonction des conditions d’environnement présentes.
L’objet de cet article est de montrer de quelle manière les effets de l’atmosphère agissent sur les performances des capteurs optroniques.
Le milieu atmosphérique, naturel ou chargé d’obscurants artificiels, agit sur les performances des équipements optroniques, et ce dans tous les domaines spectraux (UV, visible, IR) et pour des rayonnements laser :
-
en atténuant de manière sélective les radiations se propageant vers le capteur, à toute longueur d’onde ;
-
en générant par diffusion ou par émission radiative un signal optique, comparable à du bruit, à l’origine de l’affaiblissement des contrastes de perception, et qui est d’autant plus important que la distance est grande.
VERSIONS
- Version archivée 1 de avr. 1960 par Jean QUINET
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Optique Photonique
(221 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Extinction atmosphérique
L’extinction (ou atténuation) atmosphérique résulte de la superposition de deux processus physiques distincts qui sont l’absorption et la diffusion. Ces processus s’appliquent aussi bien aux molécules qu’aux aérosols, brumes, brouillards et pluie.
L’extinction est la somme de :
-
l’absorption et la diffusion moléculaires ;
-
l’absorption et la diffusion des aérosols ;
-
l’extinction par la pluie et la neige.
3.1 Absorption moléculaire et fenêtres atmosphériques
Le coefficient d’absorption dépend du type de molécules gazeuses rencontrées et de leurs concentrations.
Les variations spectrales du coefficient d’absorption déterminent le spectre d’absorption (ou d’émission des gaz).
La nature de ce spectre est due aux variations de niveaux énergétiques possibles à l’intérieur de la masse gazeuse. Cette variation est engendrée par :
-
les transitions électroniques : seuls sont absorbés les photons dont l’énergie correspond exactement à celle de la transition définie par les règles portant sur les nombres quantiques ; les transitions électroniques sont en général responsables du spectre d’émission-absorption dans l’UV, le visible et le proche IR ;
-
les vibrations des atomes : les vibrations des atomes dans la molécule gazeuse sont responsables du spectre d’émission-absorption dans l’infrarouge moyen et thermique ; c’est ce qui se passe avec certaines molécules dipolaires telles que CO2 (figure 6) ;
-
les rotations des molécules : les rotations des molécules sont responsables de l’émission‐absorption dans l’infrarouge thermique et de la structure finie des bandes vibrationnelles.
Une augmentation de la pression ou de la température tend à élargir les raies d’absorption spectrale par excitation de nouveaux niveaux d’énergie possibles et par effet Doppler.
...Cet article fait partie de l’offre
Optique Photonique
(221 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Extinction atmosphérique
Cet article fait partie de l’offre
Optique Photonique
(221 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive