Présentation
EnglishRÉSUMÉ
Cet article sur la commutation expose une démarche systématique orientée vers la synthèse des interrupteurs d'une cellule de commutation utilisée pour effectuer un transfert d'énergie contrôlé entre deux sources d'énergie complémentaires. Sont présentés en introduction les notions de base de la commutation, notions nécessaires pour mettre en œuvre une cellule de commutation « commandée », tout en respectant les relations fondamentales de causalité entre les interrupteurs. Il s’attarde ensuite sur la synthèse fonctionnelle des interrupteurs de la cellule. Au final, l’ensemble des mécanismes de commutation de la cellule est établi et caractérisé qualitativement.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Henri FOCH : Ancien Professeur de l'Institut National Polytechnique de Toulouse, Laboratoire d'Électrotechnique et d'Électronique Industrielle (LEEI)
-
Michel METZ : Professeur Émérite de l'Institut National Polytechnique de Toulouse, LEEI
-
Thierry MEYNARD : Directeur de Recherche au CNRS, LEEI
-
Hubert PIQUET : Professeur de l'Institut National Polytechnique de Toulouse, LEEI
-
Frédéric RICHARDEAU : Chargé de Recherche au CNRS, LEEI - avec la collaboration de Guillaume GATEAU, Maître de Conférences de l'INPT, LEEI, Philippe LADOUX, Professeur de l'INPT, LEEI, Emmanuel SARRAUTE, Maître de Conférences de l'IUFM Toulouse, LEEI, Henri SCHNEIDER, Maître de Conférences de l'INPT, LEEI et Christophe TURPIN, Chargé de Recherches au CNRS - Depuis janvier 2007, le LEEI a été intégré au LAPLACE (Laboratoire plasma et conversion d'énergie)
INTRODUCTION
Ce dossier fait suite au dossier [D 3 075] qui présente les objectifs de l'électronique de puissance, les notions de dipôle passif, actif et de source, ainsi que les règles de connexion des sources et la notion de cellule de commutation.
Dans ce dossier sur la commutation, nous proposons une démarche systématique orientée vers la synthèse des interrupteurs d'une cellule de commutation utilisée pour effectuer un transfert d'énergie contrôlé entre deux sources d'énergie complémentaires. Nous étudions les liens entre caractéristiques statiques des interrupteurs et réversibilités intrinsèques des sources, d'une part, et entre caractéristiques dynamiques et gestion des échanges d'énergie, d'autre part.
Nous montrons d'abord, au paragraphe 1, que l'obligation d'une commutation « rapide » des interrupteurs de la cellule (quelques dizaines de nanosecondes à quelques microsecondes selon les structures d'interrupteurs électroniques) rend extrêmement délicate voire dangereuse toute tentative de commutation complémentaire de leur résistivité. En effet, de par la dispersion inévitable des retards dans la commande et au niveau des interrupteurs eux-mêmes (retards intrinsèques et seuils), la conduction ou le blocage simultanés même fugitif des deux interrupteurs est susceptible de provoquer une surintensité ou une surtension inacceptable. Le paragraphe 1 traite ainsi des principes fondamentaux de la commutation qu'il convient de connaître pour mettre en œuvre une cellule de commutation « commandée » en respectant les relations fondamentales de causalité entre les interrupteurs. Sur la base de ces principes, le paragraphe 2 présente la synthèse fonctionnelle des interrupteurs de la cellule. Cette synthèse prendra en compte toutes les configurations de réversibilité électrique des sources raccordées et des modes de commande. Au terme des paragraphes et , l'ensemble des mécanismes de commutation de la cellule seront établis et caractérisés sur le plan qualitatif.
Il restera alors à voir comment gérer les contraintes résultant de la commutation, ce qui sera l'objet du dossier [D 3 077]. Y seront décrits les moyens mis en œuvre pour les interrupteurs actifs lors de cette commutation qui seront éventuellement fort différents de ceux requis par ceux qui ne font que subir cette commutation mais s'avèrent finalement les plus contraints. On montrera enfin qu'à l'exception des hacheurs non réversibles, ce problème se rencontre pratiquement dans tous les convertisseurs et notamment dans les onduleurs qui sont au cœur de ce dossier.
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Énergies > Conversion de l'énergie électrique > Convertisseurs électriques et applications > Synthèse fonctionnelle des interrupteurs dans la cellule de commutation > Synthèse fonctionnelle des interrupteurs dans la cellule de commutation
Cet article fait partie de l’offre
Électronique
(228 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Synthèse fonctionnelle des interrupteurs dans la cellule de commutation
Ce paragraphe est destiné à établir les règles permettant de réaliser la synthèse des interrupteurs de la cellule ; cette opération est achevée à partir :
-
des propriétés des sources interconnectées à travers la cellule de commutation ;
-
des caractéristiques des échanges de puissance, ce qui correspond à une partie du cahier des charges spécifiant le convertisseur de puissance.
Dans les paragraphes précédents ont été développés, sur la base de la causalité, les principes fondamentaux de la commutation, concernant des intervalles de temps à l'horizon desquels les interrupteurs changent d'état. Dans ce paragraphe, on se place à une échelle de temps beaucoup plus longue, qui correspond au fonctionnement cyclique de la cellule, au cours duquel les sources interconnectées peuvent évoluer, et notamment leurs valeurs changer de signe.
3.1 Conventions dans le contexte de la cellule
Les transitions d'amorçage et de blocage interviennent au sein d'une cellule de commutation et associent au minimum deux interrupteurs (K1 et K2 sur la figure 7), qui changent d'état, comme l'a établi l'étude de la causalité du § 2. On néglige la durée des commutations dans la suite de cette étude orientée vers la synthèse et on considère, dans une approche fonctionnelle mais néanmoins sans remettre en cause le principe de causalité, que les deux interrupteurs changent d'état simultanément.
Cet article fait partie de l’offre
Électronique
(228 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Synthèse fonctionnelle des interrupteurs dans la cellule de commutation
Cet article fait partie de l’offre
Électronique
(228 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive