Présentation
En anglaisRÉSUMÉ
Le capteur assure la transformation d'une information extérieure en une grandeur compatible avec l'organe de traitement. Cet article décrit les capteurs élémentaires. Il commence par définir cette notion de capteur élémentaire et comment décomposer une chaîne globale. Puis il présente les principaux phénomènes exploités par les capteurs, en utilisant des propriétés spécifiques de matériaux. Enfin les technologies de capteurs relevant de la microélectronique sont étudiées plus en détail.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Alfred PERMUY : Ancien élève de l’École normale supérieure - Docteur en Physique - Directeur technique SAFT Power Systems
-
Eric DONZIER : Ingénieur ESIEE - Directeur de recherche Schlumberger
-
Fadhel REZGUI : Docteur en Physique - Responsable Technologie capteurs Schlumberger
INTRODUCTION
Dans tous les organes naturels ou artificiels, la relation de cause à effet peut se présenter sous la forme d’une succession d’organes de captation, de traitement et d’action. Pour le capteur qui assure la transformation d’une information « extérieure » en une grandeur compatible avec l’organe de traitement, nous retiendrons la définition donnée ci-après.
Nous appellerons capteur un sous-ensemble minimal de tout objet transformant une information représentée par une grandeur physique d’une certaine dimension (Lx, My, Tu, Iv) en une grandeur physique de dimension différente (Lx, My’, Tu’, Iv’), ou sans dimension.
Par exemple, au sens de la définition précédente :
• Sont des capteurs :
-
un dynamomètre à ressort transformant une force (MLT −2) en déplacement (L),
-
un moteur transformant un courant (I) en couple mécanique (ML2T−2) ;
• Ne sont pas des capteurs :
-
un levier transformant un angle en angle ;
-
un transformateur électrique.
Il est clair que la fonctionnalité d’un capteur sera au moins définie par les dimensions des grandeurs d’entrée et de sortie ainsi que par la relation liant ces grandeurs.
Remarque : si, souvent, seule la grandeur d’entrée est donnée (on parlera de capteur de température, d’accélération, de pression) c’est que celle de sortie est considérée définie par le contexte d’utilisation. Du fait de la prépondérance des traitements de nature électronique, il s’agit le plus souvent d’une grandeur électrique.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Électronique
(227 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
4. Capteurs en silicium : l’enjeu économique
Les capteurs relevant de la technologie de la microélectronique, et plus particulièrement de celle du silicium, offrent des avantages techniques et économiques certains.
Ainsi vers la fin des années 1970, la course à l’innovation était dirigée par un souci de réduction d’encombrement afin d’augmenter la puissance de calcul ou la fonctionnalité des appareils. Dans les années 1980, l’avènement des technologies dites collectives, associé au traitement du silicium, a permis des réductions drastiques des coûts de fabrication permettant ainsi une « démocratisation » de ces nouveaux produits (microélectronique). De plus, les qualités mécaniques du silicium associées à un usinage collectif soit chimique (KOH ...) soit physique (gravure plasma, micro-forage) relativement simple, rendent aujourd’hui possible l’industrialisation de certaines microstructures pour les marchés de fort volume et faible coût.
La dualité faible taille et faible coût peut permettre de répondre à de nouveaux besoins tels que :
-
pour la médecine, micropompes pour traitement local, exploration du corps humain et traitement in situ à l’aide de microsondes ;
-
pour l’automobile, asservissement de diverses commandes, mesure et gestion de paramètres de combustion, système anticollision, système de sécurité active (airbag, ABS...) ;
-
pour l’industrie, déploiement de microsonde pour diagnostic en fond de puits pétrolier, allégement des systèmes embarqués sur satellites...
Aujourd’hui, il est clairement établi que les technologies de miniaturisation apportent des avantages incontestables en terme de coût (fort volume), fiabilité (tenue aux chocs, bonne reproductibilité des processus industriels) et possibilité d’intégration (faible taille, excellente compatibilité avec les systèmes microélectroniques usuels).
Néanmoins, l’évolution des forces fondamentales avec les dimensions des structures n’étant pas toujours favorable, celle-ci peut parfois s’accompagner d’une dégradation des performances métrologiques du microcapteur (se référer à l’article Capteurs microélectroniques...
Cet article fait partie de l’offre
Électronique
(227 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Capteurs en silicium : l’enjeu économique
BIBLIOGRAPHIE
-
(1) - GROVE (A.S.) - Physique et technologie des dispositifs à semiconducteur - . 380 p., Dunod (1971).
-
(2) - WOLKENSTEIN (Th.) - Physico-chimie de la surface des semiconducteurs - . 335 p., Édition Mir Moscou, Russie (1977).
-
(3) - KIREEV (P.) - La physique des semiconducteurs - . 728 p., Édition Mir Moscou, Russie (1975).
-
(4) - NISHIHORA (M.), YANODA (K.), MATSUOKA (Y.) - Recent semiconductor pressure sensors (Nouveaux capteurs de pression à semiconducteurs) - . Hitachi Review, vol. 30, no 6, p. 285-9 (1981).
-
(5) - MATSUOKA (Y.), NISHIARA (M.), SAKAMOTO (T.), IKEGAMI (A.) - Transmitter using diffused semiconductor strain gauges (Transducteur utilisant des jauges de contrainte à semiconducteur) - . Hitachi Review, vol. 30, no 6, p. 290-6 (1981).
-
(6) - MATSUOKA (Y.), NISHIARA (M.), SAKAMOTO (T.), IKEGAMI...
Cet article fait partie de l’offre
Électronique
(227 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive