Présentation
En anglaisRÉSUMÉ
Le domaine des réactions multicomposants procédant par voie ionique ou organométallique a connu récemment un développement remarquable. Cet article met en lumière quelques unes des avancées les plus notables dans le domaine des réactions multicomposants radicalaires et radicalaires-ioniques. Une attention particulière a été apportée aux mécanismes des différentes réactions étudiées et leur apport dans le contexte d’une chimie durable. Les méthodes dites « sans étain » sont ainsi discutées, représentant l’essentiel des stratégies développées ces dernières années. L’importance des « briques élémentaires » est particulièrement mis en exergue, ainsi que le rôle joué par les dérivés sulfonylés dans les processus « sans étain ». La réduction ultérieure des espèces radicalaires à l’aide de métaux non toxiques, tel que le zinc, ouvre également une porte vers des processus dits radicalaires-ioniques croisés. Enfin, il était utile de souligner le développement récent de processus radicalaires dits séquentiels où la réaction radicalaire précède ou suit un processus multicomposants, contribuant ainsi, en une seule opération, à l’augmentation de la complexité moléculaire.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
The domain of multicomponent reactions, based on ionic and organometallic processes has recently known a significant evolution. This article presents several of the most notable developments within the field of multicomponent and ion-radical reactions. Particular attention has been paid to the mechanisms of the various reactions studied as well as to their interest within the context of a sustainable chemistry. "Tin-free" methods are discussed which constitute the majority of the strategies which have been developed over the last few years. This article highlights the importance of small “building blocks” as well as the function of sulfonyl derivatives in tin-free processes. The further reduction of radical species using non toxic metals such as zinc also opens the door to processes such as radical-polar crossover reactions, which are very efficient in terms of bond efficiency. Finally, the recent developments of radical processes known as sequential in which the radicalar reaction precedes or follows a multicomponent process thus contributing to the increase of the molecular complexity in a single operation.
Auteur(s)
-
Yannick LANDAIS : Professeur de chimie organique de l'université de Bordeaux
-
Guy ROUQUET : Doctorant de l'université de Bordeaux
-
Laurent HUET : Doctorant de l'université de Bordeaux
INTRODUCTION
Les réactions multicomposants (RMC) révèlent une histoire ancienne qui remonte au début du siècle dernier avec l'avènement de la réaction de Mannich. D'autres développements remarquables, tels que la synthèse à 3 composants de la tropinone par Robinson, méritent également d'être cités dans ce contexte. Plus récemment, les réactions 4 composants de Ugi et Passerini ont particulièrement attiré l'attention, permettant l'accès à d'importantes bibliothèques de molécules. Cependant, c'est l'automatisation des procédés et la synthèse parallèle qui ont permis les développements les plus significatifs des réactions multicomposants au cours des vingt dernières années. L'industrie pharmaceutique a joué un rôle prédominant dans ce sens, la préparation de milliers de nouvelles molécules associée au criblage haut-débit offrant des perspectives nouvelles dans la quête de nouveaux agents thérapeutiques. Un nombre croissant de nouvelles transformations est désormais basé sur la stratégie dite « multicomposant », donnant accès à de nouvelles architectures moléculaires. La RMC symbolise une forme de « Graal » pour le chimiste organicien, étant considérée comme le processus optimal en termes de synthèse convergente, parfaitement en phase avec les concepts d'économie d'étapes et d'atomes, clés de voûte de la chimie dite « verte ». Alors que de nombreuses réactions multicomposants sont basées sur des processus ioniques et/ou organométalliques, peu font appel à des réactions radicalaires. Ce chapitre est destiné à rassembler, bien que de manière non exhaustive, les différentes réactions multicomposants basées sur des processus radicalaires, et faisant appel à des procédés respectueux de l'environnement. On décrira en particulier les diverses méthodes permettant d'assembler trois, quatre fragments, voire plus, dans des procédés dits « en un seul pot » à l'aide de transformations radicalaires ou associant des processus radicalaires et ioniques, ou radicalaires et organométalliques. Une attention particulière sera apportée aux processus « sans étain », un domaine en constante évolution en raison de la toxicité avérée des dérivés carbonés de l'étain.
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Procédés chimie - bio - agro > Chimie verte > Voies de synthèse et solvants alternatifs > Réactions multicomposants et chimie radicalaire > Réactions multicomposants radicalaires ioniques
Accueil > Ressources documentaires > Environnement - Sécurité > Métier : responsable risque chimique > Voies de synthèse et solvants alternatifs > Réactions multicomposants et chimie radicalaire > Réactions multicomposants radicalaires ioniques
Cet article fait partie de l’offre
Médicaments et produits pharmaceutiques
(125 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Réactions multicomposants radicalaires ioniques
3.1 Réactions multicomposants radicalaires anioniques
3.1.1 Processus tandem radicalaires anioniques – Des métaux « peu ou pas renouvelables »
Au cours d'une réaction radicalaire entre deux composants, la nouvelle espèce radicalaire générée peut ensuite être réduite, conduisant à une nouvelle entité nucléophile (carbanion, énolate...) qui peut être utilisée dans des processus ioniques. Étant donné le caractère relativement inerte des radicaux dans des conditions ioniques et réciproquement, il n'est pas surprenant que des réactions multicomposants incorporant des processus à la fois radicalaires et ioniques aient suscité un grand intérêt. De tels processus impliquent un contrôle subtil des différentes étapes mises en jeu. Les quelques exemples de réactions multicomposants radicalaires ioniques décrits ci-après accordent ainsi une place importante aux espèces métalliques capables de réduire ou d'oxyder sélectivement le radical présent dans le milieu. On traitera dans un premier temps de quelques-unes de ces réactions radicalaires anioniques, basées sur l'utilisation de sels métalliques en quantité stœchiométrique, présentant des toxicités non négligeables et dont l'emploi ne peut être concevable qu'à l'échelle du laboratoire. Ces exemples sont néanmoins intéressants, mettant en relief la puissance de ces processus en cascade.
Dans ce contexte, les sels de chrome (II) ont montré leur utilité en tant que réducteur doux et sélectif. Les transferts monoélectroniques (SET) en présence de sels de Cr(II) sont ainsi beaucoup plus rapides avec les radicaux allyliques qu'avec les radicaux secondaires ou tertiaires. Une telle discrimination entre espèces radicalaires a été mise à profit par Takai afin de réaliser une réaction à 3 composants impliquant un diène, un iodure d'alkyle et un aldéhyde, ces trois substrats étant inertes les uns vis-à-vis des autres en l'absence d'un amorçage spécifique (21) ...
Cet article fait partie de l’offre
Médicaments et produits pharmaceutiques
(125 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Réactions multicomposants radicalaires ioniques
BIBLIOGRAPHIE
-
(1) - TIETZE (L.F.), BRASCHE (D.G.), GERICKE (K.M.) - dans Domino Reactions in Organic Synthesis ; - Wiley-VCH : Weinheim, p. 542-565 (2007).
-
(2) - Pour une discussion récente à propos des échelles de nucléophilie et d'électrophilie des radicaux, voir : DEVLEESCHOUWER (F.), VANSPEYBROECK (V.), WAROQUIER (M.), GEERLINGS (P.), DEPROFT (F.) - Org. Lett. - , 9, p. 2721-2724 (2007).
-
(3) - FLEMING (I.) - Frontier Orbitals and Organic Chemical Reactions, - Wiley, New York, Chapitre 5, p. 182-186 (1976).
-
(4) - GIESE (B.) - Radical Organic Synthesis : Formation of Carbon-Carbon Bonds, - Pergamon Press, Oxford, Chapitre 2, p. 4-35 (1986).
-
(5) - OLLIVIER (C.), RENAUD (P.) - J. Am. Chem. Soc. - , 123, p. 4717-4727 (2001).
-
(6) - RENAUD (P.), OLLIVIER (C.), PANCHAUD (P.) - Angew....
DANS NOS BASES DOCUMENTAIRES
Cet article fait partie de l’offre
Médicaments et produits pharmaceutiques
(125 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive