Présentation
En anglaisRÉSUMÉ
La microscopie optique est une technique de caractérisation incontournable dans les sciences de la vie (biologie médicale, animale ou végétale, bactériologie, virologie…). Le standard de référence est la microscopie confocale ; la microscopie multiphotonique (MMP) apporte une spécificité spectrale associée à une propriété unique de sectionnement optique d’objets biologiques. De nouvelles sources lasers ont été développées, contribuant aux avancées de la MMP. Cet article présente les méthodes les plus utilisées en routine reposant sur le phénomène de fluorescence, et passe en revue les sources lasers spécifiquement mises en œuvre pour la MMP, avec leurs atouts et leurs limitations.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Claire LEFORT : Chargée de Recherche, CNRS, - Institut de Recherche XLIM, - CNRS, Université de Limoges, UMR 7252, Limoges, France
INTRODUCTION
La microscopie optique est une méthode d’observation incontournable dans de nombreuses disciplines des sciences de la vie. Cette technique d’imagerie est la seule proposant un protocole peu invasif mettant en jeu des interactions lumière-matière, qui minimisent les risques d’endommagement ou de destruction de la cible imagée, tout en cumulant des performances de résolution subcellulaire. Elle s’inscrit donc parmi les techniques essentielles dans de nombreuses disciplines des sciences de la vie, pour aller observer des phénomènes biologiques dynamiques ou des structures vivantes aux échelles toujours plus petites. Dans certains cas, les méthodes permettant d’atteindre les échelles nanométriques comme la microscopie électronique ou bien la microscopie à force atomique sont irremplaçables pour l’imagerie du vivant ; ce sujet représentant la limite du présent thème ne sera pas abordé ici. Dans la suite de cet article, les termes de microscopie ou microscopie optique seront employés de façon équivalente.
Quatre entreprises se partagent principalement le marché de la microscopie optique pour les sciences du vivant : Olympus, Nikon, Leica et Zeiss. Les systèmes de microscopie proposés à la vente incluent le plus souvent les dernières avancées technologiques de microscopie, qui concernent principalement les sources d’excitation, les systèmes de détection et d’acquisition ou de traitement des images ou encore les systèmes de balayage. Des solutions adaptées à un besoin spécifique peuvent aussi être proposées. C’est par exemple le cas pour certaines méthodes de microscopie optique super-résolues.
Dans ce contexte, où le besoin se révèle en même temps que les avancées technologiques apparaissent, l’importance des sources lasers d’excitation en microscopie optique a pris une nouvelle dimension depuis les années 2000. Le présent article propose d’abord un état des lieux des méthodes de microscopie optique actuellement utilisées en routine, notamment dans les laboratoires de biologie et par les plateformes d’imagerie du vivant. Il s’agit ensuite de faire un lien entre le besoin en microscopie optique pour les sciences de la vie et les innovations laser récentes. En effet, les concepts de physique impliqués dans ces innovations peuvent reposer sur des principes parfois sophistiqués, pas toujours simples à conceptualiser expérimentalement dans le contexte du besoin applicatif de microscopie pour les sciences de la vie. Ainsi, les processus optiques impliqués dans ces méthodes de microscopie sont présentés théoriquement. Enfin, le rôle et l’importance de certains paramètres physiques des sources lasers pour optimiser les processus impliqués en MMP pour les sciences du vivant sont détaillés. Une liste non exhaustive des sources lasers ayant été spécialement développées pour des applications à la MMP conclut cet article qui propose également le portrait-robot d’une source laser idéale pour la microscopie pour les sciences de la vie.
Le lecteur trouvera en fin d’article un glossaire et un tableau des symboles utilisés.
MOTS-CLÉS
microscopie de fluorescence imagerie pour les sciences de la vie microscopie multiphotonique sources laser
KEYWORDS
fluorescence microscopy | life sciences imaging | multiphotonmicroscopy | laser sources
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Électronique - Photonique > Optique Photonique > Applications des lasers > Sources lasers en microscopie optique pour les sciences de la vie > Pré-requis techniques en microscopie de fluorescence
Cet article fait partie de l’offre
Technologies pour la santé
(131 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Pré-requis techniques en microscopie de fluorescence
3.1 Laser et bandes spectrales d’intérêt en microscopie de fluorescence
En microscopie optique, le choix de la source laser et de ses paramètres physiques est conditionné, d’une part par le processus d’excitation linéaire ou non linéaire que l’on souhaite mettre en œuvre, et d’autre part par le fluorophore mis en jeu. En microscopie de fluorescence linéaire, il est fréquent de trouver 3, 4, voire 5 sources lasers différentes pour un même microscope confocal . En microscopie multiphotonique, le système standard fait plutôt appel à une source laser unique. Pour définir la technologie laser la plus adaptée selon l’application visée, fluorescence linéaire ou non linéaire, il faut garder à l’esprit que le processus linéaire d’absorption d’un photon par le fluorophore est beaucoup plus probable que le processus non linéaire d’absorption à deux photons. La section efficace d’absorption est plus importante dans le cas d’une interaction monophotonique que multiphotonique. Les paramètres temporels du laser n’ont donc pas besoin d’être ajustés finement dans le premier cas ; dans le second cas, il est impératif de faire appel à des lasers impulsionnels aussi appelés « cadencés » dont la répartition temporelle des photons émis est contrôlée. De nombreux travaux de recherche portent d’ailleurs sur les paramètres temporels des impulsions émises par ces sources (forme, durée, cadence…). La cadence laser est, dans certains cas, un paramètre à prendre en considération soigneusement en microscopie multiphotonique. Ce point illustré par des exemples chiffrés est abordé au paragraphe 3.2. Enfin, le choix de la longueur d’onde centrale d’excitation est majeur pour optimiser l’utilisation d’un microscope optique. En première intention, on peut retenir que les lasers émettant dans l’UV ou le visible sont plutôt...
Cet article fait partie de l’offre
Technologies pour la santé
(131 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Pré-requis techniques en microscopie de fluorescence
BIBLIOGRAPHIE
-
(1) - MERTZ (J.) - Introduction to Optical Microscopy. - Roberts & Company Publishers (2009).
-
(2) - HELL (S.W.) - The 2015 super-resolution microscopy roadmap. - Journal of Physics D: Applied Physics, 48, 443001 (2015).
-
(3) - DIASPRO (A.) - Confocal and Two-photon microscopy, Foundations, applications and advances. - Wiley-Liss Inc., New York (2002).
-
(4) - LAKOWICZ (J. R.) - Principles of Fluorescence Spectroscopy. - 3rd edn, Berlin : Springer (2006).
-
(5) - DENK (W.), STRICKLER (J. H.), WEBB (W. W.) - Two-photon laser scanning fluorescence microscopy. - Science, 248, 73-6 (1990).
-
(6) - SHEPPARD (C.), KOMPFNER (R.) - Resonant scanning optical microscope. - Applied Optics, 17, 2879-2882 (1978).
- ...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
On peut retrouver les spectres d’absorption linéaire des fluorophores les plus classiques en suivant l’un des liens ci-dessous :
Thermo Fisher Scientific : http://www.thermofisher.com › home › labeling-chemistry
Bio-Rad : https://www.bio-rad-antibodies.com/spectraviewer.html
On peut retrouver quelques spectres d’absorption biphotonique en suivant le lien : https://www.drbio.cornell.edu/cross_sections.html
HAUT DE PAGECet article fait partie de l’offre
Technologies pour la santé
(131 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive