Article de référence | Réf : H5020 v1

Définition, propriétés et applications des agents
Systèmes multi-agents

Auteur(s) : Frédéric AMBLARD, Amal El FALLAH-SEGHROUCHNI, Benoit GAUDOU, Chihab HANACHI

Date de publication : 10 déc. 2021

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Version en anglais English

RÉSUMÉ

Les systèmes multi-agentsconstituent une discipline issue del’Intelligence Artificielle Distribuée. Cette discipline offre une approche particulièrement adaptée au traitement de problèmes complexes ayant une nature distribuée. Elle permet l’analyse, la conception et la simulation d’applications distribuées appréhendées comme un ensemble d’entités relativement autonomes (agents), capables de raisonner, de s’organiser, d’interagir et de s’adapter à leur environnement. L’objectif de cet article est de fournir une vue synthétique de cette discipline. Il présente le contexte historique dans lequel elle est apparue, les fondements et les définitions associés et ses domaines d’applications actuels. Il explique également le fonctionnement interne desagents, leurs raisonnements et leurs propriétés. Il développe leurs modes d’interaction et d’organisation et expose leur capacité d’apprentissage. Il passe également en revue des méthodes de conception et des plateformes de développement permettant leur ingénierie.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Frédéric AMBLARD : Professeur, Université Toulouse 1 Capitole, - Institut de Recherche en Informatique de Toulouse, UMR CNRS 5505, Toulouse, France

  • Amal El FALLAH-SEGHROUCHNI : Professeure, Sorbonne Université, - Laboratoire d'Informatique de Paris 6, UMR CNRS 7606, Paris, France - Directrice du Centre international d’intelligence artificielle du Maroc, Ai movement

  • Benoit GAUDOU : Maître de conférences, Université Toulouse 1 Capitole, - Institut de Recherche en Informatique de Toulouse, UMR CNRS 5505, Toulouse, France

  • Chihab HANACHI : Professeur, Université Toulouse 1 Capitole, - Institut de Recherche en Informatique de Toulouse, UMR CNRS 5505, Toulouse, France

INTRODUCTION

Les Systèmes Multi-Agents (SMA) sont utilisés pour concevoir, modéliser, analyser et simuler des systèmes complexes impliquant de multiples entités en interaction, dont la coordination permet d’atteindre un objectif collectif ou de favoriser la stabilité du système. Ces entités autonomes composant un SMA, appelées agents, peuvent être distribuées et hétérogènes, et agir dans un environnement ouvert et évolutif. La discipline des SMA apporte les concepts, théories et outils nécessaires pour appréhender de tels systèmes avec le bon niveau d’abstraction.

Ces vingt dernières années, cette discipline a connu des avancées remarquables sous l’effet conjugué de plusieurs facteurs. En premier lieu, il faut noter l’ouverture de cette discipline à d’autres, en particulier aux sciences humaines et sociales (géographie, sociologie, linguistique, psychologie cognitive, économie et plus récemment droit), à la biologie et aux mathématiques. Motivée au départ par des applications, cette ouverture permet aujourd’hui aux SMA de constituer un domaine de recherche pluridisciplinaire s’appuyant sur des connaissances théoriques solides, validées et partagées par une communauté. Ce domaine a aussi su continuellement exploiter les résultats de l’Intelligence Artificielle (logique, apprentissage artificiel) dont lui-même est issu. Parallèlement, des progrès spécifiques ont été réalisés en termes d’ingénierie par la proposition de méthodes (GAIA, MOISE…), de formalismes basés sur la logique, de notations (ex. AUML), de langages standards (ex. FIPA-ACL) mais aussi de plateformes de simulation (GAMA, NetLogo) ou de développement (Madkit, JADE) permettant une industrialisation des applications. Cette évolution a aussi été rendue possible grâce à une communauté scientifique particulièrement dynamique, organisée autour de projets fédérateurs dont le réseau d’excellence européen AgentLink, les conférences internationales annuelles AAMAS et IJCAI et les revues JAAMAS, IJAOSE et JASSS.

Cette maturité permet aujourd’hui de concevoir des agents capables de raisonner, coopérer, s’organiser, agir, anticiper, apprendre et s’adapter aux changements de leur environnement, possiblement évolutif. Ces capacités dotent les SMA d’un pouvoir d’expression riche, aussi bien au niveau social que cognitif, permettant d’aborder des problèmes complexes dans des domaines aussi divers que les systèmes ambiants intelligents, la robotique collaborative, les chaînes logistiques ou la simulation sociale… À titre d’exemple, il peut s’agir d’une flottille de drones se coordonnant pour surveiller l’évolution d’une catastrophe naturelle et assistant les acteurs sur le terrain et la cellule de crise, d’une équipe de robots footballeurs capable d’en affronter une autre (cf. compétition robocup) en mettant en œuvre une stratégie. Cela peut également être des entités logicielles simulant les acteurs d’un réseau social et leurs émotions et conduisant à la découverte et compréhension de phénomènes de groupe émergents et non anticipés (par exemple la panique). Ses domaines d’application se sont élargis du fait du changement physique de notre environnement avec l’Internet des Objets sur des espaces de vie communs (Parc, Campus, Ville), les megadonnées produites par les réseaux sociaux ou des phénomènes planétaires (catastrophes naturelles, épidémies) suffisamment complexes pour exclure toute approche naïve et centralisée afin de les comprendre, les analyser ou les simuler.

La suite de cet article est organisée comme suit. La première section expose le contexte historique dans lequel sont apparus les SMA. La section 2 définit les notions d’agent et de SMA, discute les propriétés des agents et détaille les grandes classes d’application des SMA. La section 3 explique le fonctionnement interne des agents, leur architecture et leur raisonnement. Les sections 4 et 5 détaillent deux dimensions sociales des SMA, qui en font l’originalité : leurs modes d’interaction, et d’organisation possiblement émergente. La section 6 expose un thème particulièrement dynamique actuellement : l’apprentissage en univers multi-agents. La section 7, consacrée à l’ingénierie des SMA, présente des méthodes de conception, des langages standards et des plateformes de simulation et de développement.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-h5020


Cet article fait partie de l’offre

Automatique et ingénierie système

(139 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Version en anglais English

2. Définition, propriétés et applications des agents

2.1 Qu’est-ce qu’un agent ? Un système multi-agents ?

HAUT DE PAGE

2.1.1 Agent

Défini prosaïquement, un agent est une entité agissante . Ce qui peut passer pour une tautologie permet conceptuellement de distinguer un agent d’un objet issu des approches orientées objet. Là où un objet possède des comportements qui sont exécutés suite à des envois de message (appel de méthodes), un agent possède, au moins conceptuellement, une autonomie et une pro-activité qui font que celui-ci est à l’origine de ses propres actions .

Sur quoi agit-il ? Un agent agit sur l’environnement qu’il partage avec d’autres agents. Cet environnement est compris comme l’ensemble des entités (objets ou agents) extérieures à l’agent et que celui-ci peut percevoir (via ses senseurs) et dont il peut changer l’état (via ses effecteurs) ou avec lesquels il peut communiquer (dans le cas des autres agents).

Ainsi, l’activité d’un agent est fréquemment organisée en trois phases : perception, cognition, action. La phase de perception permet à l’agent de récupérer l’ensemble de l’information mise à jour concernant son environnement. La phase de cognition permet d’une part de mettre à jour, en prenant en compte ses perceptions,...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Automatique et ingénierie système

(139 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Définition, propriétés et applications des agents
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - ADAM (C.), GAUDOU (B.) -   BDI agents in social simulations: a survey.  -  Knowledge Engineering Review, vol. 31, no. 3, pp. 207-238 (2016).

  • (2) - AUSTIN (J.L.) -   How to do things with words.  -  Oxford university press (1962).

  • (3) - BAUER (B.), MÜLLER (J.P.), ODELL (J.) -   Agent UML: A Formalism for Specifying Multiagent Interaction.  -  In: P. CIANCARINI and M. WOOLDRIDGE, eds. Agent-Oriented Software Engineering. Springer, p. 91-103 (2001).

  • (4) - BELLIFEMINE (F.L.), CAIRE (G.), GREENWOOD (D.) -   Developing multi-agent systems with JADE.  -  John Wiley & Sons (2007).

  • (5) - BERNON (C.), GLEIZES (M.-P.), PEYRUQUEOU (S.), al -   ADELFE: A methodology for adaptive multi-agent systems engineering.  -  In: International Workshop on Engineering Societies in the Agents World. Springer, p. 156-169 (2002).

  • (6)...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Automatique et ingénierie système

(139 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS