Présentation
RÉSUMÉ
L'hydrogène est l'élément le plus répandu dans l'univers. Sur notre planète, il est présent essentiellement dans l'eau et dans les hydrocarbures qui sont les sources de l'hydrogène industriel. Ainsi, dans sa grande majorité, l’hydrogène est produit à partir d'énergies fossiles, le reste par électrolyse de l’eau. Il est largement utilisé dans l'industrie chimique et le raffinage du pétrole, entre autres. Généralement, les raffineries produisent l'hydrogène dont elles ont besoin directement sur site. Du fait de sa combustion non polluante, il est également considéré comme un des vecteurs énergétiques du futur.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
Hydrogen is the most abundant element in the universe. On our planet, it is present mainly in water and hydrocarbons, the dominant source of industrial hydrogen. The majority of global hydrogen production comes from fossil fuels but it can also be produced by electrolysis, using electricity to split water. It is widely used in the chemical and petroleum refining industries, among others. In general, most refiners produce the hydrogen they require directly on-site. By virtue of its clean burning, non-polluting combustion, it is also considered to be one of the energy carriers of the future.
Auteur(s)
-
Christophe BOYER : Ingénieur ENSEEIHT - Docteur en mécanique des fluides de l'INPG - Chef des projets Hydrogène à l'IFP Énergies nouvelles
INTRODUCTION
L‘hydrogène est l'élément le plus répandu dans l'univers. Sur notre planète, on le trouve essentiellement dans l'eau et dans les hydrocarbures qui sont les sources de l'hydrogène industriel. Celui-ci est largement utilisé dans l'industrie chimique et le raffinage du pétrole, entre autres. Du fait de sa combustion non polluante, il est également considéré comme un des vecteurs énergétiques du futur. Ses caractéristiques physico-chimiques sont données dans le tableau 1.
VERSIONS
- Version courante de mai 2019 par Karine SURLA
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Archives > [Archives] Opérations unitaires - Génie de la réaction chimique > Hydrogène > Transport, stockage et distribution
Cet article fait partie de l’offre
Véhicule et mobilité du futur
(80 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
4. Transport, stockage et distribution
4.1 Réseaux de distribution
L'utilisation industrielle de l'hydrogène dans le secteur chimique à grande échelle a débuté par la construction d'un pipeline d'hydrogène dans la Ruhr en 1938. Exploité encore aujourd'hui par Air Liquide, ce pipeline d'une longueur de 240 km et d'une capacité totale annuelle estimée à environ 250 millions de Nm3 transporte de l'hydrogène vers 14 sites industriels des secteurs de la chimie, de la pétrochimie et des gaz.
Ce mode de distribution s'avère le plus économique pour des transports de grandes quantités d'hydrogène sur des distances moyennes. Les pipelines ont des diamètres de 1 à 300 mm et sont constitués d'aciers classiques. Ils sont utilisés à une pression de service comprise entre 3 et 100 bar. Les dépenses énergétiques associées au transport de l'hydrogène par pipeline sont de 1,4 % du pouvoir calorifique inférieur (PCI) de l'hydrogène pour 150 km parcourus. Selon certaines études, une adaptation des réseaux actuels de distribution de gaz naturel au transport de l'hydrogène serait également possible sans modification du réseau, ou avec des modifications mineures, pour le transport d'un mélange gaz naturel/hydrogène (baptisé hythane) dans des proportions 8/1 à 9/1 en volume.
L'Europe de l'Ouest possède le plus grand réseau de pipelines, environ 1 500 km à comparer aux 1 150 km existants aux USA. Les principaux pays européens utilisant des réseaux de pipelines d'hydrogène sont la France, l'Allemagne et le Benelux.
Le réseau Est en France consiste en une ligne de 33 km, reliant la station d'hydrogène d'Air Liquide de Carling à l'usine Solvay de Sarralbe. L'hydrogène est issu du craquage de l'éthylène effectué par Total Petrochemicals à Carling. Le réseau Centre-Est consiste en une ligne de 57 km, allant de la station d'Air Liquide à Feyzin à l'usine Rhodia située à Roussillon sud de Lyon.
Le réseau Sud-Est d'Air Liquide, long de 42 km, relie Lavera à Fos sur Mer. L'hydrogène est issu des usines d'électrolyse chlore-soude de Fos et Lavera du groupe Arkema.
HAUT DE PAGE4.2 Stockage de l'hydrogène
Le stockage de l'hydrogène reste un verrou technologique majeur si l'on veut que l'hydrogène puisse devenir...
Cet article fait partie de l’offre
Véhicule et mobilité du futur
(80 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Transport, stockage et distribution
BIBLIOGRAPHIE
-
(1) - AFH2 - Étude technico économique prospective sur le coût de l'hydrogène. - (2006).
-
(2) - ALPHEA - Marché de l'hydrogène, hors énergies, en France et en Europe. - (2009).
-
(3) - BOURBONNEUX (G.), LEPRINCE (P.) - Production d'hydrogène. Procédés de transformation. - Technip (1998).
-
(4) - Hydrogène par électrolyse de l'eau. - L'actualité chimique. - P. 39-42, janv.-févr. 1995.
-
(5) - SHULTZ (Ph.) - Production d'hydrogène par électrolyse de l'eau. - Mémento de l'hydrogène, Fiche 3.2.1, AFH2.
-
(6) - ANDREASSEN (K.) - Hydrogen production by electrolysis, Hydrogen Power : Theoretical and Engineering solutions. - Kluwer Academic Publischers, the Netherlands (1998).
- ...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
Procédé de production de gaz de synthèse par vaporeformage dans un réacteur-échangeur FR2890955, ROJEY (A.), BERTHOLIN (S.), GIROUDIERE (F.), LENGLET (E.).
Procédé de production d'hydrogène hautement intégré thermiquement par reformage d'une charge hydrocarbonée, EP 2107043, GIROUDIERE (F.), BOYER (C.).
HAUT DE PAGE2.1 Constructeurs – Fournisseurs – Distributeurs (liste non exhaustive)
Production d'hydrogène de grande capacité (> 10 000 Nm3/h)
HALDOR TOPSOE AS http://www.topsoe.com
TECHNIP http://www.technip.com
FOSTER WHEELER http://www.fwc.com
HEURTEY PETROCHEM http://www.heurtey.com
LINDE http://www.linde.com
AIR LIQUIDE LURGI http://www.lurgi.com
Catalyseurs...
Cet article fait partie de l’offre
Véhicule et mobilité du futur
(80 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive