Présentation
Auteur(s)
-
Gérard BONIN : Ingénieur de l’Institut de Chimie et de Physique industrielles de Lyon ICPI
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
Le Système NAVSTAR (NAVigation System by Timing And Ranging) plus communément connu sous le nom de GPS (Global Positionning System) est un système de positionnement dans les trois dimensions (latitude, longitude, altitude), très précis et à couverture mondiale. Basé sur la réception de signaux émis par une constellation de satellites, ce système fut mis à l’étude en 1973 aux USA par le DOD (Department Of Defense), pour les militaires américains. Entré en phase expérimentale dès 1986 (les premiers satellites ont été lancés en 1978), il fut déclaré pleinement opérationnel en février 1994.
Ce système a modifié complètement et définitivement le paysage de la radionavigation dans cette dernière décennie du vingtième siècle.
Initialement conçu pour des applications militaires, le GPS est devenu le nouvel outil incontournable pour tous les navigateurs, géodésiens, topographes ou métrologues.
Le champ des applications de ce système est immense tant dans les domaines aéronautiques, spatiaux, maritimes ou terrestres.
Dans tous les domaines, militaires ou civils, qu’ils soient professionnels, grand public ou orientés vers les loisirs et le sport, le GPS trouve sans cesse de nouveaux débouchés et chaque année voit la mise sur le marché de matériels de mieux en mieux adaptés, de plus en plus performants et de moins en moins onéreux.
En peu d’années, le système GPS a rendu obsolète(s) la plupart des systèmes de radionavigation développés antérieurement. Ces anciens systèmes, après avoir rendu de réels services, ont vu leur influence diminuer puis leur activité s’éteindre. Qu’ils soient à bases terrestres, développés à titre privé par des industriels inventifs, comme le DECCA, le TORAN, le RANA, le SYLEDIS, l’Hyper-Fix, le MINI-RANGER ou le TRIDENT, ou développés par des organismes publics comme l’OMEGA, ou encore à bases satellitaires comme le TRANSIT, tous ont marqué le pas (cf. rubrique Radiolocalisation de ce traité) et ne subsistent à ce jour que quelques chaînes privées en exploitation itinérante.
Seul, le LORANC, encore en activité, a trouvé un espace d’existence et permet à quelques utilisateurs institutionnels de ne pas être entièrement tributaires des décisions politiques et stratégiques que le gouvernement américain peut exercer sur le système GPS qu’il maîtrise seul et entièrement.
Cette maîtrise des USA sur le système peut s’illustrer de différentes manières : dégradation volontaire du signal, extinction du signal sur certaines zones géographiques, encryptage des données diffusées par les satellites...
L’exemple récent, mai 2000, de la suppression de la SA (Selective Availability), dégradation volontaire appliquée au signal, montre bien que les performances du système sont contrôlées par le gouvernement américain en fonction de ses propres intérêts de défense ou commerciaux. Cette suppression de la SA renforce encore l’intérêt du système et lui assure des débouchés commerciaux dans le domaine grand public de plus en plus prometteurs. En effet, en l’absence de SA, les performances atteignables par de petits récepteurs portables, de bas coût, travaillant en mode naturel, libres de toute redevance, sont tout à fait remarquables et meilleures que 15 m à 95 % du temps.
En 1999, une analyse américaine estimait que le marché des récepteurs était de 8,5 billions de dollars et que ce marché dépasserait 50 billions de dollars à l’horizon 2010 !
Avant de décrire en détail le système GPS, on résumera ci-après les raisons de la réussite technique et commerciale de ce système qui, malgré l’affirmation réitérée qu’il reste sous la mainmise des militaires américains, a conquis la plupart des utilisateurs du positionnement.
Différentes raisons ou facteurs ont contribués à la réussite et à la généralisation d’emploi du système GPS.
Le GPS est un système quadridimensionnel qui permet de déterminer :
-
la latitude ;
-
la longitude ;
-
l’altitude ;
-
l’heure.
Cette capacité de détermination des composantes altimétrique et horaire ouvre des débouchés qui dépassent largement les applications classiques des systèmes antérieurs de positionnement.
Le GPS a une couverture mondiale et un fonctionnement tous temps. Le nombre de satellites constituant la constellation, le choix des fréquences utilisées et la polarisation circulaire des ondes lui confèrent l’universalité d’emploi dans l’espace et dans le temps ; il est peu affecté par les conditions météorologiques ou climatiques des zones d’utilisation.
Le GPS est un système précis et répétable à 24 h. La précision atteignable dépend de la géométrie sous laquelle l’utilisateur observe les satellites en visibilité. Compte tenu du grand nombre de satellites en fonctionnement, du choix des orbites et du lieu d’observation, entre 5 et 10 satellites sont simultanément observables. Cela permet d’obtenir, selon le mode de traitement de l’information, des précisions temps réel comprises entre 5 et 10 m si le système n’est pas volontairement dégradé, de quelques centimètres par des procédés différentiels travaillant sur la phase, et de quelques millimètres en restitution différée sur des observations faites à point fixe.
Le GPS permet la diffusion mondiale d’une échelle de temps précise, raccordée au temps universel coordonné, favorisant ainsi toutes les applications de synchronisation ou de transfert de temps avec une précision pouvant atteindre quelques nanosecondes.
Ces performances sont obtenues en mettant en œuvre des techniques modernes sur le codage du signal et l’étalement de spectre, avec un soin initial porté sur la cohérence entre le signal codé et la phase de la porteuse.
La conception du « segment sol » et la restitution de l’orbite des satellites ainsi que la qualité et la fiabilité des horloges embarquées dans les satellites sont autant de facteurs qui contribuent largement à la réussite du système.
Dès le début de la phase expérimentale, les Américains, après avoir étudié différentes possibilités pour limiter l’accès au système et percevoir des redevances d’utilisation, ont abandonné l’idée de rentabilisation financière.
Pour des raisons stratégiques, ils ont choisi de dégrader pour un temps limité, le code utilisable par les utilisateurs autres que leurs propres forces armées mais décidé d’en laisser l’accès libre et gratuit.
Cette gratuité d’accès libérant l’utilisateur, en particulier civil, de toute redevance a largement contribué à la généralisation d’emploi du système.
La diversité des applications concernées par l’utilisation du GPS a entraîné un certain nombre d’industriels, pour la plupart américains, à investir dans le développement de récepteurs.
Les possibilités technologiques aidant, particulièrement la microélectronique permettant de concevoir des circuits spécialisés ASIC (Application Specific Integrated Circuit’s) numériques et analogiques, ont permis de réduire considérablement le poids, la consommation et le coût des récepteurs, tout en améliorant les caractéristiques et performances techniques.
C’est ainsi que dans tous les domaines d’application, des récepteurs bien adaptés à la demande des utilisateurs ont vu le jour.
Toutes ces raisons conjuguées concourent à la diffusion du système et l’on peut dire, toute proportion gardée, qu’aujourd’hui le GPS a apporté à la radionavigation ce que le GSM (Global System for Mobile Communications) a apporté à la téléphonie.
Le lecteur trouvera en fin d’article la liste des principaux sigles utilisés au cours de ce document.
VERSIONS
- Version archivée 2 de mai 2014 par Nel SAMAMA
- Version courante de sept. 2019 par Nel SAMAMA
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Le traitement du signal et ses applications
(160 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
4. Techniques différentielles
Les techniques différentielles sont mises en œuvre pour réduire, voire annuler, les erreurs résiduelles de différents types. C’est donc par ces techniques que les précisions les meilleures pourront être obtenues.
Déjà utilisées dans d’autres systèmes de positionnement, les techniques différentielles sont particulièrement efficaces avec le système GPS.
La raison en est que les satellites constituant les bases du système sont à grande distance de l’utilisateur et donc que les trajets radioélectriques entre un satellite observé et deux points distincts situés à la surface de la Terre sont proches l’un de l’autre et traversent sensiblement les mêmes couches atmosphériques. Ils présentent une grande corrélation dans les erreurs subies.
L’ensemble des procédés différentiels utilisés est vaste tant en différentiel temps réel qu’en différentiel temps différé pour des applications statiques ou dynamiques.
Partant du différentiel monofréquence sur le code jusqu’au différentiel bifréquence sur la phase pour des applications cinématiques à précision centimétrique, le domaine d’application est très étendu. Mais tous les procédés mis en œuvre répondent à des caractéristiques communes.
4.1 Caractéristiques générales
Les procédés différentiels permettent d’accéder à un type de positionnement relatif, c’est-à-dire que le positionnement effectué sera en « relation » avec le positionnement du récepteur ou de la station servant de base à la mesure. Le positionnement de l’utilisateur sera d’autant plus précis en absolu que le sera celui de la base.
Dans de tels procédés, on élimine les erreurs communes observées par les récepteurs participant à la mesure simultanée faite sur les satellites du système.
Il est possible de faire du positionnement relatif de deux ensembles mobiles. Dans ce cas, ce n’est pas le positionnement de l’utilisateur qui est la grandeur recherchée mais le vecteur d’écart séparant une base mobile de l’utilisateur mobile lui aussi. La position des deux extrémités de la base peut être quelconque ; elle sera erronée de la même valeur.
Par un moyen quelconque, communication radioélectrique pour la transmission des données en temps réel ou rapprochement...
Cet article fait partie de l’offre
Le traitement du signal et ses applications
(160 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Techniques différentielles
BIBLIOGRAPHIE
-
(1) - DUQUENNE (H.) - Systèmes de référence et de coordonnées. - GB Survey Technical Overview Trimble Navigation Commercial Litterature. IGN (1993).
-
(2) - ERICKSON (C.) - An Analysis of Ambiguity Resolution Techniques for Rapid Static GPS Surveys Using Single Frequency Data. - ION GPS (1992).
-
(3) - LACHAPELLE et al - Ambiguity Resolution on the Fly. A comparison of P Code and High Performance C / A code receiver technologies. - ION GPS (1992).
-
(4) - BARBOUX (J.P.) - Practical Real Time Kinematic Applications of GPS. - DSNP Londres (1994).
-
(5) - LANGLEY RICHARD (B.) - GPS Antennas. - GPS wols, juil. 1998.
-
(6) - CONLEY (R.) - The world after Selective Availability. - ION GPS, sept. 1999.
-
...
Cet article fait partie de l’offre
Le traitement du signal et ses applications
(160 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive