Présentation
EnglishNOTE DE L'ÉDITEUR
Cet article est la réédition actualisée de l'article [M1137], paru en 2008, du même titre et du même auteur.
RÉSUMÉ
L'augmentation de productivité dans tous les domaines de mise en forme des matériaux nécessite de la part des outillages des sollicitations de plus en plus sévères. Il peut en résulter de grandes dispersions dans les résultats suivant les critères de choix de l'acier à outils, de son traitement thermique et de son traitement de surface, ainsi que du dessin et de l'état de surface de la pièce à réaliser. Le présent article constitue un guide d'ordre pratique pour le choix de la gamme de traitement thermique et de traitement de surface de l'acier à outils. Il dresse également une liste des incidents potentiels avec leur analyse et les différents moyens de contrôle destructif et non destructif des aciers à outils après traitement thermique ou traitement de surface.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Robert LÉVÊQUE : Ingénieur civil des Mines - Président d’honneur du Cercle d’études des métaux (CEM) - Expert associé à l’ARDI Rhône-Alpes, département maîtrise des matériaux
INTRODUCTION
Les aciers à outils sont utilisés dans de nombreux domaines de mise en forme des matériaux par coulée, déformation à chaud et à froid, extrusion et filage, découpage et emboutissage. La nécessaire augmentation de productivité (par exemple dans la coulée sous pression des alliages d’aluminium) ainsi que la mise en œuvre de matériaux très réfractaires (alliages de titane, de nickel et de cobalt) ont pour conséquence une élévation des sollicitations mécaniques et thermiques, ainsi que des dégradations accrues par phénomènes d’usure où interviennent des mécanismes comme l’abrasion, l’érosion, l’adhésion, la déformation à chaud et le fluage, la fatigue de surface, la fatigue thermomécanique et la corrosion. Dans ces conditions, la tenue des outillages est conditionnée par un certain nombre de facteurs parmi lesquels on peut citer :
-
le dessin et la conception de la pièce ;
-
la nature et la qualité du matériau choisi ;
-
les qualités de l’usinage et de la finition (rectification par exemple) ;
-
le traitement thermique et le traitement de surface ;
-
les conditions d’utilisation en service.
Tous ces facteurs influent sur l’état des contraintes liées d’une part à la mise en œuvre de l’outil, d’autre part aux conditions d’utilisation. Leur maîtrise est absolument nécessaire pour permettre une approche globale de l’optimisation des outillages, sous réserve d’y inclure une bonne connaissance générale du comportement des matériaux sous sollicitations complexes, susceptible de conduire à des modèles prédictifs d’endommagement. Dans ce domaine, les efforts et pressions de contact sont de mieux en mieux connus grâce aux codes de calcul simulant les écoulements de matière dans les outillages. Des progrès ont été faits aussi dans la détermination des conditions aux limites par une meilleure connaissance des flux thermiques échangés entre l’outil et la matière mise en œuvre.
Néanmoins, le choix du matériau constituant l’outil reste encore un problème complexe où se conjuguent des facteurs d’ordre technique (au niveau de la mise en œuvre et de la tenue en service) et d’ordre économique (coût de la matière, coût de mise en œuvre et disponibilité sur le marché). C’est pourquoi l’expérience pratique d’atelier conserve toute sa place à côté des codes de calcul pour l’approche de l’optimisation des outillages.
La méthode de choix proposée s’efforce de conduire à une solution qui correspond au coût unitaire minimal, ce coût étant défini comme le coût total de l’outil (fabrication, entretien) divisé par le nombre effectif de pièces qu’il permet de produire (durée de vie).
Le choix de l’acier à outil et de son traitement thermique influe beaucoup plus fortement sur la durée de vie de l’outil que sur son coût total et doit être surtout conditionné par les qualités requises en service plutôt que par celles assurant un coût de fabrication réduit. Il est certain que des économies réalisées au niveau de l’acier et de son traitement thermique sont possibles, mais souvent lourdes de conséquences au niveau des propriétés d’emploi. Des progrès substantiels ont été réalisés ces dernières années pour optimiser les conditions de trempe des outils, notamment par trempe sous gaz, grâce à des logiciels appropriés.
Des facteurs déterminants d’amélioration des performances des outils ont été apportés par les différentes filières de traitements de surface, avec notamment les traitements thermochimiques comme la nitruration, les revêtements obtenus en phase liquide ou par voie sèche, les traitements duplex, les dépôts nanostructurés et les multicouches, sans oublier les renforcements locaux par rechargement au moyen d’alliages dont les propriétés fonctionnelles sont nettement supérieures à celles du métal de base.
Le tableau 1 de la fiche donne la chronologie et le but des opérations effectuées sur les outils depuis leur conception jusqu’à leur mise en service ; il situe le traitement thermique et le traitement de surface dans le cycle de fabrication. Ces deux opérations sont les plus critiques de la gamme, car elles ont pour but d’assurer aux aciers une microstructure, un état des contraintes internes et un interface revêtement/substrat, dont dépendent les propriétés d’emploi comme la dureté, la ténacité, la résistance à l’usure et à la fatigue sous toutes ses formes (mécanique, thermique, de surface). De petites variations des paramètres de traitement thermique et de traitement superficiel peuvent se traduire par des écarts importants au niveau du comportement en service.
Le présent guide rassemble les données d’ordre pratique pour aider l’utilisateur dans le choix de sa gamme de traitement thermique et de traitement de surface. Les tableaux 1 à donnent des indications sur les différentes filières de traitements superficiels, ainsi que sur les propriétés des principaux revêtements réalisés. Le problème des variations dimensionnelles est également abordé avec les indications nécessaires pour minimiser ces dernières ; en guise de conclusion, les tableaux 5, , et rassemblent les principaux incidents pouvant survenir au cours de la fabrication des outillages et fournissent à l’utilisateur des données sur les causes possibles et les remèdes correspondants.
MOTS-CLÉS
VERSIONS
- Version archivée 1 de juil. 1981 par Robert LÉVÊQUE
- Version archivée 2 de avr. 1993 par Rober LÉVÊQUE
- Version courante de sept. 2013 par Robert LÉVÊQUE
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Traitements des métaux
(134 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
4. Incidents au traitement thermique et remèdes
Lors du traitement thermique d’outils, il peut se produire plusieurs incidents qui conduisent au rebut de la pièce ou à un rendement insuffisant en service. Il s’agit en particulier des tapures, des déformations trop importantes, d’un excès de fragilité et des variations de la composition des couches superficielles de la pièce traitée, surtout par décarburation.
4.1 Tapures
Il s’agit d’une fissuration qui se produit pendant l’opération de trempe, lorsque la vitesse de refroidissement est rapide et l’acier peu ductile.
Un exemple de l’origine des tapures est donné sur la figure 6 où, lors des opérations de refroidissement, la couche extérieure qui s’est transformée la première est soumise tout d’abord à des contraintes de compression, puis à des contraintes d’extension lorsque le cœur est successivement à l’état austénitique, puis transformé selon la trempabilité de l’acier en agrégats ferrite-carbures, en bainite ou en martensite. Lorsque les contraintes d’extension de la couche externe sont amplifiées par des facteurs de géométrie, elles peuvent dépasser la charge de rupture du matériau et c’est le phénomène de tapure. Les fissures peuvent également s’amorcer au chauffage par choc thermique et se propager au cours du refroidissement, ou après trempe et avant revenu, lorsque la structure n’est pas stabilisée. Si les tensions internes n’entraînent pas de tapures au cours du traitement, elles se maintiennent dans l’outil et peuvent conduire à la rupture soit en service, avec les sollicitations de travail, soit même au cours du stockage.
Les tapures sont liées soit à des problèmes de géométrie (angles vifs, usinage grossier avec rayures), soit à des problèmes métallurgiques (décarburation superficielle, structure aciculaire, excès de contraintes internes, etc.). Les principales causes d’incidents et les remèdes proposés sont rassemblés dans le tableau 6.
L’apport de la simulation numérique est maintenant essentiel pour prévenir les risques de tapure. Un exemple d’illustration de cet apport est donné dans la trempe d’un moule de fonderie d’aluminium qui a présenté, après traitement thermique, des fissures localisées au niveau des circuits de refroidissement de part et...
Cet article fait partie de l’offre
Traitements des métaux
(134 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Incidents au traitement thermique et remèdes
BIBLIOGRAPHIE
-
(1) - HAIRY (P.), RICHARD (M.) - Traitement de surface des moules de fonderie sous pression. - 37es journées du Cercle d’études des métaux (CEM), Albi (mai 1998). Bulletin du CEM, tome XVI, n° 17 (mai 1998).
-
(2) - HEILMANN (P) - Le traitement thermique avec chauffage convectif et trempe gazeuse haute pression. - Revue Traitement Thermique, n° 282, p. 43 à 48 (mai 1995).
-
(3) - CHAFFOTTE (F.), DOMERGUE (D.), LEFEVRE (L.), GOLDSTEINAS (A.), DOUSSOT (X.) - Nouveaux procédés de trempe gaz haute pression. - Revue Traitement Thermique et Ingénierie des Surfaces, n° 357, p. 19 à 23 (août-septembre 2004).
-
(4) - FAURE (D.), PEREZ (G.) - Évolutions techniques du refroidissement des pièces massives. - Revue Traitement Thermique et Ingénierie des Surfaces, n° 365, p. 33 à 38 (août-septembre 2005).
-
(5) - CAULE (R.) - De l’art de tremper. - Revue Traitement Thermique et Ingénierie...
NORMES
-
Barres en aciers laminées à chaud. Partie 1 : dimensions des barres rondes. - ISO 1035-1 - (1980)
-
Barres en acier laminées à chaud. Partie 2 : dimensions des barres carrées. - ISO 1035-2 - (1980)
-
Barres en acier laminées à chaud. Partie 3 : dimensions des barres plates. - ISO 1035-3 - (1980)
-
Barres en acier laminées à chaud. Partie 4 : tolérances. - ISO 1035-4 - (1982)
-
Essais de corrosion en atmosphères artificielles – Essais aux brouillards salins (indice de classement : A05-101). - NF EN ISO 9227 - (2007)
-
Standard Test Method for Adhesion Strength and Mechanical Failure Modes of Ceramic Coatings by Quantitative Single Point Scratch Testing. - C 1624-05 - (2005)
Cet article fait partie de l’offre
Traitements des métaux
(134 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive