Présentation

Article

1 - REPRÉSENTATION D'UN PROCÉDÉ ET TERMINOLOGIE

2 - MODULATION DE PUISSANCE

3 - RÉGULATEURS

4 - TECHNIQUES DE RÉGULATION

5 - MÉTHODES DE RÉGLAGE

6 - GESTION ET CONDUITE HIÉRARCHISÉES

| Réf : BE9590 v1

Méthodes de réglage
Automatisme et régulation des équipements thermiques

Auteur(s) : Jean-François BOURGEOIS

Date de publication : 10 juil. 1998

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Auteur(s)

  • Jean-François BOURGEOIS : Ingénieur-Chercheur à la Direction des Études et Recherches d’Électricité de France (Groupe Effet Joule)

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

es techniques de l’automatique ne sont pas seulement un moyen de commander des processus mais aussi un moyen de réduire les pertes de production, d’augmenter la qualité et la quantité des produits, d’augmenter la disponibilité des unités et de diminuer les coûts marginaux de production.

Un automatisme bien pensé, surtout si son étude intervient en amont de la conception des unités de production, aura une implication économique importante. L’automatisme et la régulation des équipements thermiques tels que les fours, étuves, enceintes climatiques, chaudières... s’inscrit bien dans ce cadre. La régulation des procédés thermiques regroupe l’ensemble des moyens matériels et techniques mis en œuvre pour maintenir une grandeur physique à régler, égale à une valeur désirée, appelée consigne. Lorsque des perturbations ou des changements de consigne se produisent, la régulation provoque une action correctrice sur une grandeur physique du procédé, appelée grandeur réglante (ou commande)

Dans cet article, on s'intéressera aux moyens matériels et techniques de mise en œuvre de la régulation. Les techniques décrites sont universelles et peuvent s'appliquer à tout procédé.

Les régulateurs PID (Proportionnel, Intégral, Dérivé) sont très répandus et conviennent dans environ 80 % des boucles de régulation. Pour les 20 % restant, il est nécessaire d'avoir recours à des régulations de type avancé pour lesquelles une modélisation du procédé est indispensable. Les régulateurs PID se présentent soit sous la forme d'un boîtier autonome (régulateur de tableau) qui se fixe en face avant d'une armoire de contrôle-commande, soit programmés dans un automate ou dans un calculateur industriel. Les régulateurs de type avancé sont en général programmés sur calculateur industriel équipé du nombre d'entrées-sorties nécessaire à la commande de l'installation.

Pour la plupart des applications avec PID où les contraintes sur la grandeur réglée ne sont pas fortes (précision faible, temps de montée non critique, dépassement autorisé, etc.), les réglages du régulateur sont à la portée d'un utilisateur n'ayant pas de connaissances particulières en automatique. Il suffit en général de suivre les recommandations du constructeur.

Pour certaines applications où les contraintes sur la grandeur réglée sont fortes (bonne précision, par exemple ± 0,3 sur une échelle de 100, temps de montée le plus court possible et sans dépassement, sensibilité faible aux perturbations, par exemple la température d'un fluide chauffé ne doit pas varier de plus de 2 % autour de la consigne en cas de variations de débit de ± 30% autour du débit nominal), on utilise plusieurs PID en cascade ou en tendance. Mais cette architecture, très souvent onéreuse, engendre généralement une mise en service longue et nécessite l'assistance d'un spécialiste de l'automatique.

Pour les cas que l'on pourrait qualifier de pointus (temps mort important, supérieur à la moitié de la constante de temps principale du procédé, constantes de temps et gain statique variables en fonction des conditions de fonctionnement), une modélisation du procédé s'impose avec régulation de type avancé.

Cette solution est longue et onéreuse car elle nécessite une étude spécifique par un spécialiste de l'automatique, avec développement sur calculateur ou automate ou plus rarement sur des régulateurs de tableau de très haut de gamme.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-be9590


Cet article fait partie de l’offre

Thermique pour l’industrie

(37 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

5. Méthodes de réglage

Voici quelques méthodes couramment utilisées et valables pour des régulateurs PID du type :

5.1 Méthode de Broïda

Le système est modélisé par , identifié à partir d’une réponse indicielle en boucle ouverte (figure 33). La méthode de Broïda consiste à observer cette réponse et à l’assimiler à la réponse d’un système du premier ordre (de constante de temps θ ), avec un retard pur τ. Les points d’ordonnées 28 % et 40 % (donnant respectivement les temps t1 et t2) permettent de calculer θ et τ par les formules :

τ = 2,8 t1 – 1,8 t2

θ = 5,5 (t2 – t1)

Elle est adaptée aux systèmes stables avec retard pur éventuel. Les réglages sont donnés par les formules :

avec :

BP (%)
 : 
bande proportionnelle à afficher au régulateur
Δy
 : 
variation de la sortie correspondant à Δu
C
 : 
échelle ou étendue de la commande u
E
 : 
échelle ou étendue...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Thermique pour l’industrie

(37 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Méthodes de réglage
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) -   Les fours industriels à résistances électriques, conception-choix et utilisation.  -  Collection Electra 1989 DOPEE 85 CFE, Service diffusion de la documentation, Espace Elec., CNIT, Les pompes à chaleur dans l’industrie. Les chaudières électriques.

  • (2) -   Les régulateurs industriels Fichier produits fournisseurs.  -  1988 CETIM.

  • (3) - RACHID (A.) -   Systèmes de régulation.  -  411 p. 1996 Masson.

  • (4) - BOURGEOIS (J.F.) -   Panorama sur les techniques actuelles de régulation des fours et des réchauffeurs électriques.  -  100 p. 1993, Note EDF HE 25 W 84 Direction des Études et Recherches.

  • (5) - BHALY -   Boucles de régulation.  -  298 p. 1988 Kirk.

  • (6) - DINDELEUX (D.) -   Technique de la régulation industrielle.  -  175 p....

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Thermique pour l’industrie

(37 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS