Présentation

Article

1 - CONSIDÉRATIONS GÉNÉRALES

  • 1.1 - Diversité des questions
  • 1.2 - Éléments et isotopes
  • 1.3 - Contraintes des technologies en milieu radioactif

2 - CHIMIE DE L’URANIUM ET DES ÉLÉMENTS TRANSURANIENS

3 - MÉTHODES D’ANALYSE

4 - CONCLUSION

  • 4.1 - Considérations d’ordre analytique
  • 4.2 - Considérations relatives à la radioactivité
  • 4.3 - Considérations d’ordre technico-économique

| Réf : P3720 v2

Conclusion
Analyse de l’uranium et des éléments transuraniens

Auteur(s) : Jean-François WAGNER, Alain VIAN

Date de publication : 10 déc. 1999

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Auteur(s)

  • Jean-François WAGNER : Docteur de l’université Pierre-et-Marie-Curie (Paris VI), spécialité Chimie analytique - Chef du Laboratoire de spectroscopie laser analytique au Centre d’études de Saclay (CEA)

  • Alain VIAN : Ingénieur de l’Institut national supérieur de chimie industrielle de Rouen (INSCIR), - Responsable développements analytiques au service Laboratoire de l’usine COGEMA de la Hague

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

L’objet de cet article est de présenter un panorama de la chimie analytique des éléments de numéros atomiques 92 à 96, compris dans la série des actinides : l’uranium, le neptunium, le plutonium, l’américium et le curium.

Dans le domaine nucléaire, domaine certes spécialisé mais qui a bientôt soixante-dix ans d’expérience industrielle, l’uranium est présent à tous les stades du cycle du combustible : prospection, extraction et traitement des minerais, enrichissement, fabrication des combustibles, irradiation en réacteurs, traitement des combustibles irradiés. Le plutonium est, par ses applications, l’élément le plus intéressant formé par irradiation ; il est recyclé dans les combustibles des réacteurs. C’est pourquoi le texte consacre la plus large part à ces deux éléments.

Le neptunium, bien qu’ayant des applications plus limitées, intervient dans la neutronique des réacteurs et dans la chimie du retraitement. L’américium est produit en quantités de moins en moins négligeables, à mesure qu’augmentent les taux de combustion et les quantités de plutonium formées, stockées ou recyclées.

Le curium a moins d’intérêt industriel ; sa filiation, comme celle de l’américium, est néanmoins à prendre en compte dans le stockage des déchets de haute activité. L’analyse du curium n’est que brièvement évoquée ci-après.

De même, les éléments de numéros atomiques supérieurs à 96, dont la chimie analytique est le fait de laboratoires de recherche spécialisés, ne sont pas traités dans cet article. Une caractéristique de l’analyse des éléments à numéros atomiques les plus élevés est la courte durée de vie, souvent inférieure à la minute, des isotopes et le petit nombre d’atomes que l’on sait en produire [1].

Cet article est une mise à jour de l’article de M. François RÉGNAUD.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v2-p3720


Cet article fait partie de l’offre

Techniques d'analyse

(289 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

4. Conclusion

La chimie analytique des EUTU a fait l’objet d’un développement qui, grâce à la diversité des procédés physico-chimiques de ces éléments, conduit à disposer d’un grand éventail de techniques. Dans certains cas, ces techniques ont un domaine d’application commun, ce qui est quelquefois un avantage – l’utilisation de deux méthodes qui reposent sur un principe différent aidant à la recherche de l’exactitude – et ce qui d’autres fois donne une impression de concurrence. C’est pourquoi il convient de compléter le paragraphe 3 par quelques commentaires essayant d’orienter des choix et de dégager des perspectives.

4.1 Considérations d’ordre analytique

  • Précision : les titrages ou la coulométrie et la dilution isotopique en spectrométrie de masse à thermo-ionisation sont les trois méthodes d’analyse les plus précises. Elles sont recoupées selon les cas par la gravimétrie d’un oxyde, la spectrophotométrie de Pu(VI), l’absorption et la fluorescence des rayons X.

Les titrages et la coulométrie sont des méthodes de référence qui interviennent dans l’étalonnage d’autres techniques. La spectrométrie de masse est à la fois une méthode précise et une méthode d’analyse de traces ; son application à l’analyse élémentaire est d’autant plus logique qu’elle est indispensable à la détermination complète et précise des isotopes. Les résultats obtenus en spectrophotométrie d’absorption et en spectrométrie X font ressortir l’importance des progrès récents des appareillages (amélioration de la qualité des spectrophotomètres, des tubes X, des détecteurs, informatisation qui permet une analyse plus aisée et plus fine du signal) sur le domaine d’application d’une méthode.

  • Sensibilité et sélectivité : ces deux notions...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Techniques d'analyse

(289 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Conclusion
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - ROTH (E.) -   Chimie nucléaire appliquée,  -  Masson, Paris, 1968.

  • (2) -   *  -  International atomic energy agency (IAEA). Symposium sur le phénomène d’Oklo, Libreville (juin 1975).

  • (3) -   *  -  Protection, Manipulation, Détection, Sécurité (PMDS). Publications périodiques. CEN Saclay.

  • (4) - PASCAL (P.) -   Nouveau traité de Chimie Générale,  -  Masson (Paris 1962 à 1970).

  • (5) - KELLER (C.) -   The chemistry of the transuranium elements,  -  Verlag Chemie, RFA (1971).

  • (6) - KATZ (J.J.), SEABORG (G.T.), MORSS (L.R.) -   The chemistry of actinide elements,  -  Chapman and Hall Ed., New York (1986).

  • ...

DANS NOS BASES DOCUMENTAIRES

  • Chimie des actinides.

  • Échanges d’ions. Principes de base.

  • Échanges d’ions. Technologie d’applications.

  • Potentiométrie.

  • Coulométrie.

  • Spectrométrie de masse.

  • ...

1 Appareillages

La majorité des appareils d’analyse est commercialisée par des firmes supposées connues. Nous citons uniquement :

HAUT DE PAGE

2 Organismes

LAMMAN, CEA (Laboratoire de métrologie des matières nucléaires, Centre d’études de Valrho/Marcoule).

CETAMA, CEA/DCC (Commission d’établissement des méthodes d’analyses, Centre d’études de Valrho/Marcoule).

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Techniques d'analyse

(289 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS