Présentation
RÉSUMÉ
Les techniques de mesure de radioactivité par scintillation liquide sont assez faciles à mettre en œuvre et assez fiables. Elles sont, de ce fait, très utilisées. Pour comprendre ces techniques, il faut connaître les phénomènes physico-chimiques intervenant dans le processus d’émission de lumière, de détection et d’analyse des impulsions. La qualité des résultats obtenus repose sur la qualité des sources scintillantes, la détermination de leur rendement lumineux, l’étalonnage des détecteurs et l’appréciation de l’incertitude de mesure.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Philippe CASSETTE : Laboratoire National Henri Becquerel (CEA/BNM)
INTRODUCTION
Les techniques de mesure d’activité par scintillation liquide sont apparues il y a une cinquantaine d’années et se sont imposées dans les domaines des sciences de la vie et de la terre, de la surveillance de l’environnement et en métrologie fine de la radioactivité.
Ces techniques consistent à mélanger la solution radioactive à mesurer à un liquide scintillant et à transformer les rayonnements ionisants, consécutifs aux désintégrations radioactives, en lumière, détectable et quantifiable.
Les principaux avantages de la scintillation liquide sont la facilité de préparation des sources radioactives, l’efficacité géométrique de détection de 4π et l’absence de barrière physique entre le radionucléide à mesurer et le détecteur, autorisant la détection de rayonnements de faible énergie. La mesure d’activité par scintillation liquide est une des seules méthodes permettant de mesurer l’activité de radionucléides bêta purs, où la désintégration radioactive n’est pas accompagnée de rayonnement gamma détectable par d’autres techniques. C’est également l’une des seules méthodes de mesure des radionucléides se désintégrant par capture électronique, surtout ceux conduisant à l’émission de rayonnements ionisants de faible énergie.
La scintillation liquide peut également être utilisée comme méthode absolue de mesure d’activité, c’est-à-dire sans faire appel à un étalon.
Les appareils modernes de comptage par scintillation liquide peuvent avoir des limites de détection extrêmement faibles autorisant la mesure de microactivités. Une des applications est la datation au carbone 14 et le traçage géologique.
Les inconvénients principaux de cette technique résident dans son rendement énergétique global qui est faible et variable en fonction de la composition de la source scintillante. Cela impose de calculer le rendement de détection pour chaque condition de mesure.
La maîtrise des techniques de mesure d’activité par scintillation liquide passe d’abord par la compréhension des phénomènes physico-chimiques intervenant dans le processus d’émission de lumière, de détection et d’analyse des impulsions. Elle repose ensuite sur la qualité des sources scintillantes, la détermination de leur rendement lumineux, l’étalonnage des détecteurs et l’appréciation de l’incertitude de mesure. Elle suppose enfin l’utilisation d’appareils de mesure fiables et vérifiables.
VERSIONS
- Version courante de juin 2020 par Philippe CASSETTE
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Techniques d'analyse
(289 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
6. Contrôle des compteurs à scintillation liquide
Comme tout appareil de mesure, les compteurs à scintillation liquide doivent être contrôlés périodiquement afin de s’assurer de leur bon fonctionnement. La nature et la périodicité de ces contrôles sont décrites dans la norme CEI 1304. Cette norme internationale résulte de la norme américaine ANSI N42.15 relative au même sujet. Cependant, cette norme doit être plus suivie dans son esprit que dans sa lettre car l’évolution des compteurs et des scintillateurs a rendu certains points désuets.
La norme indique que les contrôles doivent être effectués à la réception de l’appareil, après toute intervention et modification, et périodiquement. La norme préconise un contrôle rapide quotidien des compteurs.
Ces contrôles portent sur la répétabilité, la reproductibilité et la linéarité des compteurs.
La répétabilité quantifie l’étroitesse de l’accord entre les résultats de mesure du même mesurande effectués dans la totalité des mêmes conditions de mesure, notamment pour ce qui concerne la source, l’opérateur et le protocole de mesure.
La reproductibilité quantifie l’étroitesse de l’accord entre les résultats de mesure du même mesurande effectués en faisant varier les conditions de mesure.
La fidélité est l’aptitude de l’appareil à délivrer des indications très voisines lors de la mesure répétée du même mesurande dans les mêmes conditions de mesure.
La linéarité est l’aptitude de l’instrument de mesure à conserver sa justesse dans toute la gamme de mesure prévue. La justesse est un concept qualitatif, défini comme l’aptitude d’un instrument de mesure à donner des indications exemptes d’erreurs systématiques.
Ces contrôles nécessitent l’utilisation de sources de constance ainsi que de méthodes d’analyse des résultats permettant de conclure si l’appareil est conforme ou non à ce qui est attendu.
6.1 Sources de constance
Le suivi de l’appareil à long terme suppose l’utilisation de sources scintillantes stables, par exemple de 3H et de 14C. Ces sources doivent être conditionnées dans des flacons scellés à la flamme et il est préférable que le radionucléide soit sous forme organique et que le scintillateur ne comporte pas de produits surfactants....
Cet article fait partie de l’offre
Techniques d'analyse
(289 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Contrôle des compteurs à scintillation liquide
BIBLIOGRAPHIE
-
(1) - KALLMAN (H.) - Scintillation counting with solutions. - Phys. Rev. 78, 621-622 (1950).
-
(2) - REYNOLDS (G.T.), HARRISON (F.B.), SALVINE (G.) - Liquid scintillation counters. - Phys. Rev. 78, 488 (1950).
-
(3) - BELL (C.G.) Jr, NEWTON HAYES (F.) - Liquid scintillation counting. - Proceedings of a conference held at Northwestern University, Pergamon Press (1958).
-
(4) - DYER (A.) - Liquid Scintillation counting practice. - Heyden (1980).
-
(5) - SIMONNET (G.), ORIA (M.) - Les mesures de radioactivité à l’aide de compteurs à scintillation liquide. - Eyrolles (1980).
-
(6) - GRAU MALONDA (A.) - Free parameter models in liquid scintillation counting. - Editorial CIEMAT (1999).
-
...
Cet article fait partie de l’offre
Techniques d'analyse
(289 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive