Présentation
RÉSUMÉ
La connaissance des structures tridimensionnelles est une condition nécessaire à une compréhension à l'échelle atomique des fonctions biologiques. La diffraction des rayons X est une des deux méthodes utilisées pour déterminer la structure tridimensionnelle des macromolécules. Les macromolécules sont cristallisées à partir d'une solution aqueuse, dans des conditions physico- chimiques (température, pH, pression, etc.) où elles gardent leur activité biologique. La cristallographie ne souffre pas de limitations en taille de la macromolécule étudiée. Cependant, la collecte des données de diffraction doit faire face au nombre important de mesures à enregistrer et à traiter, et à une intensité faible des ondes diffractées.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
The knowledge of three-dimensional structures is essential in order to understand biological functions at the atomic scale. The X-ray diffraction is one of the two methods implemented in order to determine the three-dimensional structure of macromolecules. The macromolecules are crystallized from an aqueous solution in physico-chemical conditions (temperature, pH, pressure, etc.) where they maintain biological activity. In crystallography there is no limitation in size of the studied macromolecule. However the collection of diffraction data must address the issues induced by the large number of measurements to be recorded and treated and the low intensity of the diffracted waves.
Auteur(s)
-
Jean Cavarelli : Professeur de biophysique structurale - Centre européen de biologie et génomique structurales - Université de Strasbourg - IGBMC, Strasbourg-Illkirch
INTRODUCTION
Les molécules biologiques responsables de toute vie cellulaire sont des hétéropolymères de très grande taille appartenant à deux familles : les protéines et les acides nucléiques. Les processus biologiques sont les résultats d'interactions complexes et dynamiques (dans l'espace et dans le temps) soit de macromolécules biologiques entre elles, soit de macromolécules avec de petits substrats cellulaires. La connaissance des structures tridimensionnelles de ces macromolécules soit seules, soit engagées dans des complexes spécifiques, est essentielle pour la compréhension (à l'échelle atomique) des fonctions biologiques. Les structures 3D sont des outils précieux dans l'étude des réactions complexes à l'origine des mécanismes du vivant et jouent de plus un rôle intégrateur et fédérateur dans le processus complexe et pluridisciplinaire allant d'une tumeur à son médicament et couvrant des domaines de recherche allant de la génomique intégrative à la modélisation moléculaire. La connaissance de ces structures est l'un des piliers actuels de la biologie moléculaire et représente une source de progrès qui génère des retombées non seulement en recherche fondamentale mais aussi en recherche appliquée (domaine de la santé humaine, biotechnologies). Cela justifie les investissements importants réalisés depuis plusieurs années dans les secteurs publics et privés.
La diffraction des rayons X par des monocristaux est la méthode par excellence pour l'étude des macromolécules biologiques à l'échelle atomique. La cristallographie a permis la détermination des structures tridimensionnelles de plusieurs dizaines de milliers de macromolécules biologiques dans des gammes de taille et de complexité très variées : petites protéines, oligonucléotides, acides ribonucléiques de transfert, immunoglobulines, complexes multienzymatiques, complexes nucléoprotéiques, virus d'insectes, de plantes ou de mammifères. Les propriétés physico-chimiques intrinsèques des macromolécules biologiques donnent naissance à des cristaux avec de grands paramètres de maille cristalline et un pouvoir de diffraction en général limité en comparaison du standard actuel des petites molécules organiques. Cela impose des méthodes et des techniques adaptées tout au long du processus cristallographique. Cette méthodologie propre aux macromolécules biologiques va être présentée dans cet article et le suivant. L'explosion actuelle de cette méthode est due aux progrès réalisés tant au niveau de la technologie (biologie moléculaire, source de rayons X, cryocristallographie, détecteurs de rayons X, moyens de calculs) qu'au niveau des logiciels de traitements des données de diffraction (collecte, phasage, affinement). Cela se traduit par un raccourcissement extraordinaire du délai séparant l'obtention d'un premier cristal de qualité à la détermination de la structure cristalline. Les progrès réalisés permettent une automatisation de plus en plus poussée du processus de détermination de structure. Une étude cristallographique peut être maintenant conduite en quelques semaines (voire quelques jours ou quelques heures) après l'obtention des premiers cristaux dont la limite de diffraction est raisonnable. Cette révolution permet à la cristallographie biologique de relever de nouveaux défis à la fois en recherche fondamentale et en recherche appliquée. Chaque nouvelle structure tridimensionnelle bouleverse et balaye la vision (parfois simpliste et très incomplète) du processus par lequel une fonction biologique est assurée. Ces nombreux progrès méthodologiques et techniques permettent d'aborder des problèmes de plus en plus complexes.
La lecture de cet article suppose une connaissance initiale de la cristallographie géométrique et une première initiation à la théorie de la diffraction des rayons X par des monocristaux. Le lecteur pourra consulter quelques références données à la fin de cet article en [Doc. P 1 110] pour compléter sa formation initiale.
VERSIONS
- Version courante de juin 2019 par Jean CAVARELLI
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Archives > [Archives] Médicaments et produits pharmaceutiques > Détermination des structures 3D des macromolécules biologiques par diffraction X. Partie 1 > Enregistrement des données de diffraction
Cet article fait partie de l’offre
Techniques d'analyse
(289 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
4. Enregistrement des données de diffraction
Dans le cas de la collecte des données par la méthode d'oscillation, qui est la méthode de référence actuelle pour les cristaux de macromolécules biologiques (voir paragraphe 4.3.1), l'énergie diffractée Ehkl pour chaque réflexion hkl est reliée au module du facteur de structure |Fhkl | par la relation de Darwin (hypothèse d'un cristal de parfaite mosaïcité (*) en rotation avec une vitesse angulaire constante) :
avec :
- C :
- facteur constant,
- Ahkl :
- facteur d'absorption,
- Lhkl :
- facteur de Lorentz,
- Phkl :
- facteur de polarisation,
- V :
- volume de la maille cristalline directe,
- Vc :
- volume du cristal,
- λ :
- longueur d'onde du faisceau incident d'intensité I0 .
(*) Dans un cristal réel, la périodicité cristalline n'est jamais parfaite. Des défauts ponctuels (dislocations, défauts d'empilement, grains et joints de grains, macles) affectent l'ordre cristallin à courte distance. Un cristal est constitué d'agrégats de petits cristaux ou grains reliés entre eux par des surfaces de raccordement appelées joints de grains. Les dislocations des grains et leurs frontières caractérisent la mosaïcité du cristal. Celle-ci se traduit par un élargissement des pics de diffraction.
La collecte des données de diffraction des macromolécules biologiques doit résoudre plusieurs problèmes :
-
un nombre important de mesures à enregistrer et à traiter : le nombre de réflexions à mesurer est directement proportionnel...
Cet article fait partie de l’offre
Techniques d'analyse
(289 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Enregistrement des données de diffraction
BIBLIOGRAPHIE
-
(1) - AUTHIER (A.) - Cristallographie géométrique. - [A 1 305] Physique Chimie (1993).
-
(2) - JEANNIN (Y.) - Résolution d'une structure cristalline par rayons X. - [P 1 075] Techniques d'analyse (1998).
-
(3) - JEANNIN (Y.) - Détermination de structure cristalline par rayons X : méthodes numériques. - [P 1 076] Techniques d'analyse (1996).
-
(4) - BROLL (N.) - Caractérisation de solides cristallisés par diffraction X. - [P 1 080] Techniques d'analyse (1996).
###
Les articles ci-dessous développent, illustrent et complètent, certains aspects présentés dans cette revue :
LASKOWSKI (R.A.) - THORNTON (J.M.) - Understanding the molecular machinery of genetics through 3D structures. - Nat. Rev. Genet., 9(2), p. 141-151, fév. 2008.
ALBER (F.) - ORSTER (F.) - KORKIN (D.) - TOPF (M.) - SALI (A.) - Integrating Diverse Data for Structure Determination of Macromolecular Assemblies. - Annu. Rev. Biochem., 77, p. 443-477 (2008).
CHRUSZCZ (M.) - WLODAWER (A.) - MINOR (W.) - Determination of Protein Structures. A Series of Fortunate Events. - Biophysical Journal, vol. 95, p. 1-9, juil. 2008.
WLODAWER (A.) - MINOR (W.) - DAUTER (Z.) - JASKOLSKI (M.) - Protein crystallography for non-crystallographers. - FEBS Journal, 275 (1), p. 1-21, janv. 2008.
MINOR (D.L.) Jr - The Neurobiologist's Guide to Structural Biology : A Primer on Why Macromolecular Structure Matters and How to Evaluate Structural Data. - Neuron, 54, p. 511-533, 24 mai 2007.
SCHMIDT (A.) - LAMZIN (S.) - From atoms to proteins. - Cell. Mol. Life Sci., 64, p. 1959-1969 (2007).
Pour une étude approfondie, on pourra consulter les revues de synthèse ci-dessous
Crystallography of complexes. - Acta Cryst D63, Part 1, janv. 2007.
Structural Proteomics IN Europe. - Acta Cryst D62, Part 10, oct. 2006.
Data collection and analysis. - Acta Cryst D62, Part 1, janv. 2006.
Model building and refinement. - Acta Cryst D62, vol. 11, déc. 2004.
Experimental Phasing. - Acta Cryst D59, vol. 11, nov. 2003.
High-throughput structure determination. - Acta Cryst D58, vol. 11, nov. 2002.
Une bibliographie plus générale en biologie structurale
* - http://www.bio3d-igbmc.u-strasbg.fr/
...Cet article fait partie de l’offre
Techniques d'analyse
(289 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive