Présentation
En anglaisRÉSUMÉ
Cet article présente les bases de la cryptographie quantique et introduit la distribution de clés cryptographiques DQC. Il décrit les risques que l'informatique quantique représente pour la cryptographie actuellement déployée et pose ces questions : Quand les ordinateurs quantiques seront-ils opérationnels ? Devons-nous déployer aujourd'hui la DQC et comment améliorer préventivement la cryptographie existante (doubler la taille des clés, changer de protocoles, mixer avec la DQC) ? Ces sujets sont traités sous l'angle de la normalisation de la DQC qui permet d'adresser ces problèmes en offrant le cadre de réflexion nécessaire à l'élaboration de normes des fonctionnalités, des composants, des conditions de fonctionnement (métrologie) et des tests nécessaires à la future assurance qualité de la cryptographie, donc celle de notre sécurité.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
This article presents the basic principles of quantum cryptography and a brief introduction to quantum key distribution (QKD). It describes the risks inherent in currently deployed cryptography techniques used in quantum computing and raises some questions: When will quantum computers be operational? Should we deploy QKD today, and how should we go about improving existing cryptography (doubling key size, replacing protocols, mixing with QKD)? These issues are discussed here with respect to QKD standardization. Standardization is an option for dealing with these issues, offering the required working framework to develop the functional standards, components, operational conditions (metrology) and tests needed for quality assurance of future security-enhancing cryptography techniques.
Auteur(s)
-
Patrick René GUILLEMIN : Ingénieur innovation, recherche et normalisation – ETSI Services - European Telecommunications Standards Institute / Institut européen des normes de télécommunications, Sophia Antipolis, France
INTRODUCTION
Cet article est un état de l'art synthétique de la DQC (Distribution Quantique de Clés cryptographiques) vue sous l'angle de la normalisation, et en particulier celui de l'ETSI (European Telecommunications Standards Institute). Il présente des informations actualisées et élargies de la DQC normalisée, suivies de l'introduction de la QSC (Quantum Safe Cryptography), venant ainsi compléter l'article [NM 2 400] paru en 2008 sur la distribution quantique.
L'ETSI est un organisme officiel de normalisation dans les télécommunications, surtout connu pour ses standards GSM (4G/5G aujourd'hui). Composé de 770 membres dans 62 pays, il regroupe aussi les acteurs majeurs de la DQC dans l'ISG QKD (Industry specification Group, Quantum Key Distribution) en assurant une collaboration internationale entre les experts.
L'échange sécurisé le plus critique sur les réseaux publics (Internet, courrier physique) est celui permettant la mise en place de clés de chiffrement symétriques entre Alice et Bob. Cette étape préalable aux échanges de données est primordiale. Sur Internet aujourd'hui, la cryptographie est une rude compétition entre les responsables de la sécurité des systèmes d'information (gouvernementaux, militaires, industriels, financiers, médicaux) et les hackers qui peuvent être des ennemis, des concurrents, des enquêteurs, des pirates ayant de mauvaises intentions, ou parfois seulement des personnes qui aiment relever des défis et partager leurs résultats sur Internet.
L'enjeu est donc de sécuriser globalement les communications de données, ainsi que les informations stockées (et chiffrées) dans nos bases de données. Nos systèmes d'information contiennent parfois des secrets à protéger pour des dizaines d'années. Certaines données ont besoin d'une sécurité pérenne dans le temps. En effet, grâce aux capacités de stockage gigantesques disponibles à faibles coûts, les communications de données chiffrées et considérées sûres aujourd'hui (surtout les plus sensibles) peuvent être conservées par les hackers pour être décryptées ultérieurement. Ils peuvent en effet patienter jusqu'à la découverte de failles de conception, ou de défauts de fonctionnement. Le risque de décryptage devient de plus en plus important avec le temps et surtout avec l'augmentation de la puissance de calcul informatique, les découvertes mathématiques, les améliorations et innovations algorithmiques et l'apparition progressive d'ordinateurs quantiques.
La puissance de calcul des ordinateurs en réseaux (grilles de calculs, de services et de données, Cloud) est en augmentation permanente. De ce fait, les algorithmes de déchiffrement utilisés (parfois faillibles) sont rendus de moins en moins résistants à la cryptanalyse, d'autant moins résistants du fait de certaines découvertes mathématiques (imprévisibles) concernant notamment la décomposition de très grands nombres entiers en facteurs premiers. En cryptographie, le temps énorme de calcul nécessaire à la décomposition de très grands nombres entiers en produits de facteurs premiers permet dans la plupart des cas d'identifier un niveau de complexité, et donc de mesurer le niveau de confiance que l'on est en droit d'accorder à la solidité d'un moyen de chiffrement « classique ».
L'arrivée de la cryptographie quantique vient bouleverser tous les principes précédemment décrits. On connaît en effet l'existence de certains prototypes expérimentaux et peut-être (selon D-Wave Systems Inc.) l'avènement de nouveaux types d'ordinateurs spécialisés, mais déjà disponibles à la vente, capables de réaliser très rapidement des calculs jusqu'ici inaccessibles aux ordinateurs dits « classiques ». Lorsque les ordinateurs quantiques généralistes seront accessibles en masse (à des prix accessibles), la question sera posée des dispositions à prendre avec les systèmes de sécurisation globaux existants et des modifications à apporter pour éviter la révélation de nos secrets par les ordinateurs quantiques.
Si l'informatique quantique n'en est qu'au stade expérimental, la cryptographie quantique est, elle, une réalité. La distribution quantique des clés cryptographiques (DQC) est un exemple de réalisation concrète de la cryptographie quantique ayant déjà des applications dans les domaines de la sécurité gouvernementale (sécurisation des élections), financière (sécurisation des clés de chiffrement utilisées pour les transactions bancaires), militaire, informatique (backup sécurisés entre des centres de calculs stratégiques) et médicale (confidentialité à long terme des données médicales stockées).
À quel stade de maturité se trouve la cryptographie quantique (la DQC par exemple) et pouvons-nous l'utiliser aujourd'hui pour garantir la sécurité pérenne (forward-secure) de nos échanges et du stockage de nos données ? Voici les questions auxquelles répond positivement cet article. Peut-on dire aujourd'hui que nous utilisons des systèmes cryptographiques quantum-safe, c'est-à-dire capables de résister aux attaques utilisant l'informatique quantique ? La réponse est oui pour certains et non pour d'autres. L'article indique également comment et pourquoi il est urgent d'améliorer dès maintenant certains chiffrements et décrit quelles primitives cryptographiques sont concernées. Quand cela est possible, il est précisé comment leur robustesse quantique pourrait être renforcée et également comment nous pouvons déjà utiliser la DQC pour offrir une sécurité pérenne dans le temps et dans les limites actuelles des possibilités de déploiement.
Le manque de connaissances sur la cryptographie quantique et sa complexité multidisciplinaire auraient pu freiner son développement. Nous verrons que c'est grâce à la métrologie, la certification et la normalisation de la DQC dans le groupe de normalisation ETSI ISG QKD que ce risque a pu être maîtrisé. Aujourd'hui, nous pouvons avoir confiance dans la DQC et dans son déploiement. Afin de se familiariser avec cette nouvelle technologie incontournable, il est important de s'informer maintenant, en suivant notamment l'évolution du livre blanc sur la QSC et des normes sur la DQC, une manière efficace de garder le contact avec la recherche spécialisée, l'industrie de pointe et les hackers quantiques qui collaborent.
Pour en savoir plus sur la cryptographie « classique » (RSA, AES, DES), le lecteur intéressé peut se référer à l'article [H 5 210].
Un glossaire présenté au paragraphe 7 apporte les définitions des termes et expressions les plus utilisées dans l'article.
VERSIONS
- Version courante de nov. 2023 par Patrick René GUILLEMIN
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Sécurité des systèmes d'information
(76 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Quantum Safe Cryptography
Comme l'a dit le président de l'ETSI ISG QKD de Toshiba, pour assurer la sécurité persistante des données échangées et stockées, il faut conduire deux approches en parallèle :
-
chercher de nouvelles techniques de gestion de clé publiques résistantes à la menace d'un décryptage utilisant des algorithmes quantiques ;
-
mettre en œuvre une cryptographie quantum-safe, c'est-à-dire non remise en cause par le déploiement des ordinateurs quantiques.
3.1 Livre blanc sur la sécurité et cryptographie résistante aux ordinateurs quantiques
L'ETSI organise chaque année des conférences TIC de portées internationales dont deux sur la QSC (2013 et 2014). En plus des présentations déposées en ligne, la synthèse des travaux a été publiée en e-proceeding en 2013 [Mosca13] et dans un nouveau livre blanc [WPQSC] sur la QSC en 2014. Ce document est une base utile dont il faudra suivre les évolutions à l'ETSI dans le futur ISG QSC.
Les définitions des symboles et abréviations dans ce qui suit sont à retrouver en page 43 à 47 du livre blanc [WPQSC].
HAUT DE PAGE3.2 Outils cryptographiques à écarter
Ce livre blanc liste les outils cryptographiques sur lesquels on ne peut plus compter à long terme car ils sont vulnérables aux attaques utilisant des ordinateurs quantiques : RSA, DSA (digital signature algorithm ), DH (Diffie-Hellman ), ECDH (elliptic curve Diffie-Hellman ), ECDSA (elliptic curve digital signature algorithm ) et autres variantes. AES-128 pourrait être considéré comme vulnérable, mais si on double la taille de la clé en chiffrant avec AES-256, un ordinateur quantique aura la même difficulté qu'un ordinateur classique. Pour cette raison, AES est dit agile et quantum-safe.
Dans cette optique, les produits basés sur RSA ou ECC à écarter seraient :
-
les infrastructures de clés publiques (PKI, public key infrastructure ) délivrant des certificats SSL (secure sockets layer, prédécesseur de TLS (transport layer security ) utilisés pour confirmer les identités basées pour la plupart sur RSA-2048 ;
-
la...
Cet article fait partie de l’offre
Sécurité des systèmes d'information
(76 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Quantum Safe Cryptography
BIBLIOGRAPHIE
-
(1) - BENNETT (C.), BRASSARD (G.) - Quantum cryptography : public key distribution and coin tossing. - Proc. of the IEEE International conference on Computers, Systems and Signal Processing, Bangalore, India, 175 (1984).
-
(2) - BENNETT (C.H.), BRASSARD (G.), BREIDBART (S.), WIESNER (S.) - Eavesdrop-detecting quantum communications channel. - IBM Technical Disclosure Bulletin, 26, p. 4363 (1984).
-
(3) - SHANNON (C.E.) - Communication theory of secrecy systems. - Bell System Technical Journal, vol. 28, p. 656-715, oct. 1949.
-
(4) - BUCHMANN (J.), DAHMEN (B.), HÜLSING - XMSS – A practical forward secure signature scheme based on minimal security assumptions - (2011) https://wwweprint.iacr.org/2011/484.pdf
-
(5) - KORZH (B.), CI WEN LIM (C.), HOULMANN (R.), GISIN (N.) et al - Provably secure and practical quantum key distribution over 307 km of optical fibre. - New York, États-Unis, 28 juil. 2014.
-
...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
[SECOQC] Projet de recherche SECOQC (Secure Communication based on[nbsp ]Quantum Cryptography) ayant donné naissance à l'ETSI ISG QKD en[nbsp ]octobre 2008 http://www.secoqc.net/html/standards/standardisation.html (page consultée le 3 novembre 2014)
[QuRep] Projet de recherche QuRep (Quantum Repeaters for Long Distance Fibre-Based Quantum Communication) de janvier 2010 à décembre 2012 http://quantumrepeaters.eu et http://quantumrepeaters.eu/attachments/article/22/022_QuReP_ concertation2010_4.pdf
[MIQC] FP7 project MIQC (Metrology for Industrial Quantum Communications) http://projects.npl.co.uk/MIQC/NPL
[DWAVE] « Lockheed Martin (secteur de la défense) Quantum Computation Center at University of Southern California, The Quantum Artificial Intelligence Lab (Google, NASA and Universities Space Research Association Collaboration) » (novembre 2014) http://www.dwavesys.com/our-company/customers
[D-WAVE-Google] « Where do we stand on benchmarking...
Cet article fait partie de l’offre
Sécurité des systèmes d'information
(76 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive