Présentation

Article

1 - COGÉNÉRATION ET GÉNIE CLIMATIQUE

2 - COGÉNÉRATION ET ENVIRONNEMENT

3 - ASPECTS TECHNIQUES

4 - CHAUDIÈRE PLUS TURBINE À VAPEUR

5 - MOTEURS ALTERNATIFS MA

6 - TURBINES À COMBUSTION TAC

| Réf : BE9340 v1

Aspects techniques
Cogénération en génie climatique - Aspects techniques

Auteur(s) : Claude LÉVY, Jean-Pierre TABET

Date de publication : 10 janv. 1999

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Auteur(s)

  • Claude LÉVY : Ingénieur de l’École centrale de Paris - Ingénieur-conseil en thermique et énergétique

  • Jean-Pierre TABET : Ingénieur de l’École centrale de Paris - Chargé de mission à l’Agence de l’environnement et de la maîtrise de l’énergie (Ademe)

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

La cogénération réalise une production combinée et indissociable d’énergie mécanique et thermique, par combustion d’énergie primaire (en général un combustible fossile) dans un système moteur. L’énergie mécanique est le plus souvent transformée en énergie électrique à l’aide d’un alternateur. Elle peut aussi entraîner directement des machines tournantes telles que : compresseur frigorifique, pompe, ventilateur, etc.

L’énergie thermique est utilisée directement sous forme de chaleur, mais peut être également valorisée en production de froid, par des procédés d’absorption. La production simultanée d’électricité, de chaleur et de froid est appelée trigénération.

L’intérêt des systèmes de cogénération réside dans leurs rendements globaux (c’est-à-dire la somme des rendements électrique et thermique) qui sont élevés, le plus souvent compris entre 70 % et 90 %. Pour mémoire, les meilleurs rendements des centrales électriques à production simple sont de 37 % pour les centrales thermiques classiques et de 55 % pour les centrales à cycle combiné.

Les installations de génie climatique sont particulièrement favorisées, puisque les besoins de chaleur pour le chauffage des locaux sont concentrés en hiver, période où l’électricité fournie par le réseau EDF est la plus chère. Ainsi, l’électricité produite, qu’elle soit autoconsommée ou qu’elle soit revendue au réseau, est valorisée au mieux.

De même, dans les pays ayant de forts besoins de conditionnement d’air en été, comme en particulier dans tout le sud des États-Unis, la production directe de froid par machines thermiques entraînant des compresseurs frigorifiques, complétée par l’utilisation de la chaleur cogénérée dans des refroidisseurs à absorption, s’avère une technique très compétitive. Cette technique est beaucoup moins intéressante en France où les faibles coûts de l’électricité en été favorisent la production de froid par motocompresseurs électriques. Toutefois, dans tous les ensembles où l’on peut avoir besoin simultanément de froid et de chaud (hôpitaux, aéroports, immeubles de bureaux, grands magasins, etc.), la trigénération peut se montrer intéressante.

La cogénération présente aussi un avantage très appréciable sous forme de disponibilité d’une autoproduction d’électricité permettant un secours en cas d’indisponibilité du réseau de distribution d’électricité. Ce secours peut être plus ou moins rapide et élevé suivant les filières utilisées. Mais, dans tous les cas où le secours électrique est indispensable (hôpitaux, aéroports, etc.), il peut remplacer ou suppléer une installation de groupes électrogènes classiques.

Le combustible primaire utilisé dans une installation de cogénération dépend de la technique choisie. S’il s’agit de moteurs alternatifs ou de turbines à combustion, les combustibles utilisables sont le gaz naturel, le fioul domestique ou lourd (mais après traitement), ainsi que les autres types de gaz : gaz de pétrole liquéfié (GPL), biogaz et gaz de décharge. Les systèmes de cogénération à base de chaudière et de turbine à vapeur, quant à eux, peuvent utiliser l’ensemble des combustibles destinés aux différents types de chaudières. Il peut donc s’agir de produits pétroliers, de charbons ou lignites, de gaz naturel, de pétrole, de biogaz, mais également de déchets ménagers et industriels.

La cogénération connaît depuis le milieu des années 1980 un fort développement dans la plupart des pays industriels : en 1995, 7 % de l’électricité totale produite en Europe provenait d’installations de cogénération, et près de 30 % aux Pays-Bas, en Finlande et au Danemark. En France, ce pourcentage est de 2 %, à mettre en relation avec la surcapacité du parc de production dans le pays depuis plus de 10 ans.

La majorité de ces pays ont élaboré des réglementations pour favoriser la cogénération, compte tenu des économies d’énergie qu’elle procure et de l’impact sur l’environnement. En France, des incitations fiscales ont été accordées à partir de 1993 et un décret a confirmé fin 1994 l’obligation pour EDF d’acheter l’électricité produite en cogénération. De plus, des modalités d’achat de l’électricité par le réseau public, spécifiques à la cogénération, ont été fixées début 1997 dans un « Contrat d’Achat Cogénération » par EDF et les pouvoirs publics. Ce contrat permet d’assurer, sur une période d’au moins 12 ans, la stabilité des résultats financiers et, consécutivement, des prises de décision plus nombreuses.

Les projets de cogénération requièrent un certain nombre de précautions :

  • les technologies employées sont plus complexes que celles utilisées dans une chaufferie ordinaire, de par l’aspect électrique et le couplage au réseau. Elles requièrent donc des organismes possédant la double compétence thermique et électrique pour les mettre en œuvre et les exploiter ;

  • les investissements sont plus importants, à puissance thermique égale, que pour une chaufferie ordinaire ;

  • les matériels spécifiques (moteurs alternatifs, turbines à compression) font l’objet de développements constants et de performances mécaniques accrues. Cependant, les turbines à vapeur sont d’une technicité plus simple, bien connue et fiable. Mais elles imposent une exploitation beaucoup plus délicate et moins automatisable ;

  • au-delà des risques industriels inhérents à tout nouveau projet, les installations de cogénération sont exposées à des aléas spécifiques, liés principalement au fait que les conditions d’achat et de vente d’électricité sont le plus souvent un élément essentiel de la rentabilité. Parmi ces aléas, on peut noter :

    • une mauvaise estimation, à la conception, des besoins électriques et thermiques provenant d’une connaissance imparfaite des paramètres de fonctionnement de l’installation, ou encore une dérive de ces besoins dans le temps, rendant l’installation mal proportionnée ;

    • l’incertitude sur les dérives des prix des combustibles par rapport à ceux de l’électricité, qui peut rapidement inverser les résultats des bilans financiers ;

    • les pénalités des contrats de vente à EDF en cas d’incidents et d’arrêts de fourniture ;

  • il faut garder à l’esprit également les évolutions importantes et régulières des réglementations environnementales sur les rejets gazeux (entre autres normes qui s’appliquent d’ailleurs à toutes les installations de combustion).

Il en résulte que toute conception d’installation de cogénération demande non seulement une étude technique poussée mais aussi et surtout une étude économique comportant une évaluation de ces risques et, consécutivement, une incertitude sur l’absolue validité des résultats escomptés. Cet article ne peut donc donner qu’un aperçu des problèmes et il est conseillé pour tout nouveau projet de faire appel à des sociétés spécialisées et expérimentées.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-be9340


Cet article fait partie de l’offre

Ressources énergétiques et stockage

(189 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

3. Aspects techniques

Les différentes techniques de cogénération sont décrites plus complètement dans un précédent article : Les techniques de cogénération [1] de ce traité. Le lecteur est invité à s’y reporter en cas de besoin.

3.1 Principales filières techniques

Toutes les machines produisant de l’énergie mécanique à partir de chaleur rejettent une partie de celle-ci à la source froide mais cette chaleur bas niveau n’est pas toujours utilisable. Les trois types de machines les plus courantes sont les moteurs à combustion externe, les moteurs alternatifs à combustion interne, les turbines à combustion. On peut associer deux des trois types de moteurs précédents (cycles combinés) dans le but d’augmenter les rendements énergétiques d’ensemble.

HAUT DE PAGE

3.1.1 Moteurs à combustion externe : chaudière plus turbine à vapeur (Ch + TV)

De manière simplifiée, ils comprennent une chaudière brûlant un combustible quelconque et produisant de la vapeur haute pression (HP). La vapeur est envoyée dans une turbine où sa détente est transformée en énergie mécanique recueillie sur l’arbre de la turbine. La vapeur sortante, à basse ou moyenne pression, est utilisée pour les besoins de chauffage. Elle peut l’être, soit directement sous forme vapeur, soit après passage dans un condenseur, réchauffant au secondaire un fluide caloporteur (généralement de l’eau chaude ou surchauffée).

L’avantage essentiel de ce principe est de pouvoir utiliser n’importe quel combustible ou source de chaleur à un potentiel suffisamment élevé. C’est le seul système capable de s’adapter :

  • au charbon, utilisé surtout en grandes puissances ;

  • aux ordures ménagères et déchets brûlés en usines d’inci-nération ;

  • aux chaleurs diverses récupérables sur des process indus-triels ;

  • aux combustibles gazeux ou liquides à faible pouvoir calorifique.

HAUT...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Ressources énergétiques et stockage

(189 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Aspects techniques
Sommaire
Sommaire

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Ressources énergétiques et stockage

(189 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS