Présentation
RÉSUMÉ
La particularité de l’air humide est d’être constitué d’un mélange gazeux. Dans le cas d’un fluide pur, l’état thermodynamique est entièrement caractérisé par la connaissance de deux grandeurs. Mais, dans le cas d’un mélange, la connaissance d’un troisième paramètre est nécessaire pour caractériser l’état thermodynamique. Pour l’air humide, ce paramètre peut être l’une des grandeurs utilisées pour définir l’« humidité ». Lorsque l’on connaît la température, la pression et l’un de ces paramètres caractérisant l’« humidité », on peut déterminer tous les autres, et des grandeurs telles que la masse volumique, le volume massique, l’enthalpie, etc.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Bertrand BLANQUART : Responsables du laboratoire d’hygrométrie du Centre technique des industries aérauliques et thermiques (CETIAT)
INTRODUCTION
La particularité de l’air humide est d’être constitué d’un mélange gazeux, qui doit dans la plupart des cas être pris en compte dans l’interprétation d’un phénomène : en effet, dans le cas d’un fluide pur, l’état thermodynamique est entièrement caractérisé par la connaissance de deux grandeurs, par exemple la température et la pression, ou la pression et le volume, etc. En revanche, dans le cas d’un mélange, la présence de plusieurs constituants impose la connaissance d’un troisième paramètre pour caractériser l’état thermodynamique. Pour l’air humide, ce troisième paramètre peut être l’une des nombreuses grandeurs utilisées couramment pour définir l’« humidité » : rapport de mélange, humidité relative, température de rosée, température humide, etc.
Lorsque l’on connaît la température, la pression et l’un quelconque de ces paramètres, il est alors possible de déterminer tous les autres, ainsi que les différentes grandeurs telles que la masse volumique, le volume massique, l’enthalpie, etc.
Certaines définitions et des relations sont à connaître pour effectuer les calculs permettant de passer d’une grandeur à l’autre, ainsi que pour utiliser un diagramme de l’air humide.
Comme pour toute mesure, l’obtention d’un résultat correct dépend avant tout du choix d’un capteur adapté, ensuite de son utilisation appropriée et enfin de l’analyse du résultat obtenu. Les différents types d’hygromètres utilisés pour des mesures en environnement climatique sont donc présentés ici.
VERSIONS
- Version courante de déc. 2017 par Bernard CRÉTINON, Bertrand BLANQUART
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Physique énergétique
(73 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
2. Définitions et principales relations entre les grandeurs de base
La particularité de l’air humide est d’être constitué d’un mélange gazeux, qui doit dans la plupart des cas être pris en compte dans l’interprétation du résultat ; en effet, dans le cas d’un fluide pur, l’état thermodynamique est entièrement caractérisé par la connaissance de deux grandeurs, par exemple la température et la pression, ou la pression et le volume, etc. Dans le cas d’un mélange, la présence de plusieurs constituants impose la connaissance d’un troisième paramètre pour caractériser l’état thermodynamique ; pour l’air humide, ce troisième paramètre peut être l’une des nombreuses grandeurs utilisées couramment pour définir l’« humidité » : rapport de mélange, humidité relative, température de rosée, température humide, etc.
Lorsque l’on connaît la température, la pression et l’un quelconque de ces paramètres, il est possible de déterminer tous les autres, ainsi que les différentes grandeurs telles que la masse volumique, le volume massique, l’enthalpie, etc. Le but de ce paragraphe est de donner les principales définitions et les relations à connaître pour effectuer les calculs permettant de passer d’une grandeur à l’autre. L’hypothèse simplificatrice qui est faite est que l’air sec et la vapeur d’eau se comportent comme des gaz parfaits. Les lecteurs qui recherchent des connaissances plus approfondies sur la thermodynamique de l’air humide sont invités à se reporter aux références [1] et [2].
Les développements suivants ne concernent que l’air humide. Pour des gaz autres que l’air, la démarche est exactement la même, mais on remplacera dans les relations mathématiques la masse molaire et les différentes grandeurs physiques de l’air par celles du gaz considéré.
Pour les définitions...
Cet article fait partie de l’offre
Physique énergétique
(73 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Définitions et principales relations entre les grandeurs de base
BIBLIOGRAPHIE
-
(1) - HARRISON (L.P.) - Fundamental Concepts and Definitions Relating to Humidity. - Humidity and Moisture, 3, 3-69 (1965).
-
(2) - HARRISON (L.P.) - Some Fundamental Considerations Regarding Psychrometry. - Humidity and Moisture, 3, 71-103 (1965).
-
(3) - WEXLER (A.) - Vapor pressure formulation for water in range 0 to 100 oC. - Journal of Research of the National Bureau of Standards, 80A, no 5 et 6, 775-785 (1976).
-
(4) - WEXLER (A.) - Vapor pressure formulation for ice. - Journal of Research of the National Bureau of Standards, 81A, no 1, 5-20 (1977).
-
(5) - SONNTAG (D.) - Vapor pressure formulation based on the ITS-90 and psychrometer formulae – Important new values of the physical constants of 1986. - Z. Meteorologie, 70, 5-340-344 (1990).
-
(6) - Fondamentals handbook. - ASHRAE (2001).
- ...
DANS NOS BASES DOCUMENTAIRES
NORMES
-
Mesure de l’humidité de l’air – Paramètres hygrométriques - NF X 15-110 - 07-94
-
Thermal Environmental Conditions for Human Occupancy - ASHRAE Std 55-2004 -
ANNEXES
1 Fabricants, constructeurs d’hygromètres
(liste non exhaustive)
HAUT DE PAGE1.1 Hygromètres à condensation
EdgeTech (États-Unis) http://www.edgetech.com
General Eastern (États-Unis) http://www.gesensing.com/generaleasternproducts
MBW (Suisse) http://www.mbw.ch
Michell Instruments (Royaume-Uni) http://www.michell.co.uk
HAUT DE PAGE1.2 Hygromètres à variation d’impédance
Delta Ohm (Italie) http://www.deltaohm.com
E+E (Autriche) http://www.epluse.com
Gefran (France) http://www.gefran.com
Hanna Instruments (France) http://www.hanna-france.com
Jules Richard Instruments (France) http://www.julesrichard.com
Kimo Instruments (France) http://www.kimo.fr
Rotronic...
Cet article fait partie de l’offre
Physique énergétique
(73 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive