| Réf : A140 v1

Quaternions

Auteur(s) : Jean-Claude RADIX

Date de publication : 10 mai 1981

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Auteur(s)

  • Jean-Claude RADIX : Ingénieur civil des Télécommunications Ingénieur à la Société Nationale Industrielle Aérospatiale Professeur à l’École Nationale Supérieure de l’Aéronautique et de l’Espace (ENSAE) et à l’École Nationale Supérieure des Techniques Avancées (ENSTA)

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

1. Définition et propriétés des quaternions

2. Représentation d’une rotation par un quaternion

3. Application aux produits de rotations

3.1 Première méthode

3.2 Deuxième méthode

3.3 Représentation de l’attitude d’un véhicule

3.3.1 Notation engin

3.3.2 Notations avion-bateau

Références bibliographiques

L’utilisation des nombres complexes (de la forme a + ib, avec a et b réels et i2 = – 1, permet de résoudre élégamment certains problèmes de géométrie plane, dans lesquels interviennent des déplacements et des similitudes, et en particulier des rotations autour du point zéro, origine des coordonnées. Un nombre complexe a + ib, ou encore ρeiθ sous sa notation polaire, devient ainsi un opérateur et réalise, par la multiplication, une rotation d’angle θ suivie d’une homothétie de rapport ρ.

La généralisation de cette méthode aux problèmes de géométrie dans l’espace (à trois dimensions) a naturellement tenté un certain nombre de mathématiciens. La difficulté provenait du fait qu’ils cherchaient à résoudre cette question en respectant simultanément deux contraintes :

  • conservation de la validité des règles habituelles du calcul algébrique (associativité et commutativité de l’addition et de la multiplication, distributivité de la multiplication par rapport à l’addition, etc.) ;

  • aptitude du nouveau concept à l’étude des rotations autour de l’origine.

  • Ce fut le mathématicien et astronome irlandais Hamilton qui réussit en 1843, après une dizaine d’années de recherches, à dégager les points suivants, aboutissant ainsi à la découverte des quaternions [1] [2] [3] :

  • la généralisation des doublets (a, b) représentant les nombres complexes ne peut pas être faite au moyen de triplets (a, b, c) pour des raisons d’ordre purement algébrique ; par contre, cette généralisation peut être effectuée au moyen de quadruplets (a, b, c, d) ;

  • l’algèbre recherchée doit présenter un caractère non commutatif traduisant la non-commutativité (en général) des produits de rotations autour d’un point, dans l’espace à trois dimensions.

  • Hamilton réussit ainsi à définir un ensemble de nombres à quatre composantes, présentant une structure de corps non commutatif (cf article Langages des ensembles et structures [AF 33] dans le présent traité), que lui-même et ses élèves appliquèrent aux problèmes de géométrie. En fait, ce calcul quaternionesque fut quelque peu éclipsé par le calcul vectoriel classique (avec produits scalaires, vectoriels, mixtes, etc.), aussi bien en géométrie qu’en mécanique rationnelle. Cependant, depuis une vingtaine d’années, nous assistons à une réapparition de ces quaternions, notamment dans la résolution de certains problèmes de pilotage et de navigation, par exemple à propos des systèmes inertiels à composants liés [7].

    L’objet de cet article est de rappeler la définition des quaternions, de montrer comment ils peuvent être associés à des vecteurs à trois dimensions et être utilisés dans la représentation des rotations.

    Cet article est réservé aux abonnés.
    Il vous reste 94% à découvrir.

    Pour explorer cet article
    Téléchargez l'extrait gratuit

    Vous êtes déjà abonné ?Connectez-vous !


    L'expertise technique et scientifique de référence

    La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
    + de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
    De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

    DOI (Digital Object Identifier)

    https://doi.org/10.51257/a-v1-a140


    Cet article fait partie de l’offre

    Mathématiques

    (167 articles en ce moment)

    Cette offre vous donne accès à :

    Une base complète d’articles

    Actualisée et enrichie d’articles validés par nos comités scientifiques

    Des services

    Un ensemble d'outils exclusifs en complément des ressources

    Un Parcours Pratique

    Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

    Doc & Quiz

    Des articles interactifs avec des quiz, pour une lecture constructive

    ABONNEZ-VOUS

    Lecture en cours
    Présentation

    Cet article est réservé aux abonnés.
    Il vous reste 93% à découvrir.

    Pour explorer cet article
    Téléchargez l'extrait gratuit

    Vous êtes déjà abonné ?Connectez-vous !


    L'expertise technique et scientifique de référence

    La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
    + de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
    De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

    Cet article fait partie de l’offre

    Mathématiques

    (167 articles en ce moment)

    Cette offre vous donne accès à :

    Une base complète d’articles

    Actualisée et enrichie d’articles validés par nos comités scientifiques

    Des services

    Un ensemble d'outils exclusifs en complément des ressources

    Un Parcours Pratique

    Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

    Doc & Quiz

    Des articles interactifs avec des quiz, pour une lecture constructive

    ABONNEZ-VOUS

    Sommaire
    Sommaire

    Cet article est réservé aux abonnés.
    Il vous reste 92% à découvrir.

    Pour explorer cet article
    Téléchargez l'extrait gratuit

    Vous êtes déjà abonné ?Connectez-vous !


    L'expertise technique et scientifique de référence

    La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
    + de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
    De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

    Cet article fait partie de l’offre

    Mathématiques

    (167 articles en ce moment)

    Cette offre vous donne accès à :

    Une base complète d’articles

    Actualisée et enrichie d’articles validés par nos comités scientifiques

    Des services

    Un ensemble d'outils exclusifs en complément des ressources

    Un Parcours Pratique

    Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

    Doc & Quiz

    Des articles interactifs avec des quiz, pour une lecture constructive

    ABONNEZ-VOUS