Présentation
RÉSUMÉ
Cet article décrit les applications de la technologie térahertz, englobant l'instrumentation, la sécurité, le contrôle industriel, la biologie et la médecine, l'environnement, et les télécommunications. L'avis des auteurs sur le futur des technologies térahertz conclut cette présentation.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
This article lists and explains applications of the terahertz technology including instrumentation, security, sensors for industry, biology and medicine, environment, telecoms? The authors' opinion on the future of terahertz technology serves as a conclusion to the article.
Auteur(s)
-
Frédéric GARET : Maître de conférences - IMEP-LAHC, UMR 5130 du CNRS, université de Savoie
-
Jean-Louis COUTAZ : Professeur - IMEP-LAHC, UMR 5130 du CNRS, université de Savoie
INTRODUCTION
L'étude du domaine térahertz a été relancée et facilitée à la fin des années 1980 grâce à l'émergence de nouvelles techniques et technologies, tout d'abord optoélectroniques, puis basées sur la montée en fréquence des composants électroniques ou le développement de nouveaux composants nanométriques. Cet effort de recherche est stimulé, au-delà de la recherche académique, par les nombreuses applications entrevues. Ces applications s'appuient sur la transparence de matériaux opaques dans le visible ou l'infrarouge (applications à l'imagerie pour le contrôle industriel, la médecine ou pour la sécurité – inspection des personnes –), signatures spectrales uniques pour certaines molécules (applications à l'identification de molécules par spectroscopie – environnement, sécurité, biophysique, astrophysique, etc. –), la possibilité de moduler ces ondes à très hautes fréquences (télécoms très haut débit à très courtes distances). Cet article présente tout d'abord les applications de la technologie térahertz dans le domaine de l'instrumentation scientifique, qui constitue actuellement sans aucun doute le plus gros marché pour les dispositifs et systèmes térahertz. Ensuite, il décrit le domaine de la sécurité et du militaire, auquel est dédiée aujourd'hui une très grande partie des recherches en térahertz. La troisième partie de cet article est consacrée aux applications industrielles. Si peu de systèmes térahertz sont effectivement installés aujourd'hui dans les entreprises, on peut imaginer qu'à terme, nombre de niches seront occupées par la technologie térahertz qui viendra en complément de techniques déjà bien répandues, comme la spectroscopie infrarouge et visible, ou bien la diffraction des rayons X, etc. Le paragraphe suivant décrit l'application de l'imagerie térahertz à l'examen d'œuvres du patrimoine artistique, qui met en jeu des procédures très proches de celles des applications industrielles. Le développement d'instrumentations et techniques térahertz pour la médecine et la biologie est ensuite présenté. Souvent décrite comme technique d'investigation d'avenir pour la médecine, l'imagerie térahertz a néanmoins du mal à s'imposer définitivement. Pour la biologie, les applications semblent plus faciles à mettre en place. Dans le domaine environnemental, grâce à leur spécificité spectrale, les ondes térahertz apportent des informations complémentaires des techniques traditionnelles, comme le LIDAR, ou même des informations uniques, certaines molécules ne présentant une signature spectrale originale que dans le domaine térahertz. Enfin, la montée en fréquence des télécommunications les rapprochent régulièrement de la région térahertz. D'une part, les flux de données, au niveau de tests en laboratoire, dépassent les 100 Gbits/s, mais on met aussi au point des systèmes de transmission en espace libre, principalement pour l'intérieur des immeubles, employant une onde térahertz comme porteuse du signal. Cet article se conclut par la réflexion des auteurs sur l'avenir de la science et de la technologie térahertz. Enfin, une liste la plus complète possible des entreprises proposant des composants, des dispositifs et des systèmes térahertz est donnée.
KEYWORDS
FTIR spectroscopy | Terahertz imaging | telecommunications | Control Quality
VERSIONS
- Version courante de mai 2022 par Frédéric GARET, Jean-Louis COUTAZ
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Archives > [Archives] Techniques d'analyse > Ondes électromagnétiques térahertz - Applications > Télécommunications
Cet article fait partie de l’offre
Physique Chimie
(201 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
7. Télécommunications
La fréquence élevée des ondes térahertz permet d'envisager le développement de systèmes de télécommunication à très haut débit. Par contre, l'absence de guides d'onde performants et l'absorption élevée de l'air ambiant limitent ce domaine d'application à des télécommunications à très courtes distances. Actuellement, des travaux et des démonstrations sont réalisés pour employer, au sein d'une pièce à l'intérieur d'un bâtiment, une onde électromagnétique térahertz comme porteuse d'une information dont le débit serait de quelques dizaines de gigabits par seconde. L'idée est d'utiliser le signal amené dans la pièce par une fibre optique pour moduler une source térahertz qui rayonne au moyen d'une antenne dans toute la pièce. Chaque appareil multimédia dans la pièce (TV, ordinateur, tablette, etc.) reçoit ce signal par l'intermédiaire d'une antenne réceptrice. Ainsi, ces appareils peuvent être directement alimentés par un signal de plusieurs dizaines de gigabits par seconde. L'atténuation des ondes térahertz par l'atmosphère et aussi par les murs de la pièce constitue un avantage, puisque le signal reste confiné dans la pièce et ne peut être détecté à l'extérieur de cette pièce. Si de tels débits sont actuellement presque inutiles, l'avènement de futurs standards de télévisions, comme la super haute définition (SHDTV), demandera de tels débits (typiquement 2 Gbit/s par canal de télévision). À côté de l'aspect divertissement de cette technologie, des applications professionnelles de la super haute définition sont entrevues, par exemple dans le cas d'opérations médicales à longues distances par l'intermédiaire de moyens vidéo. Plusieurs équipes travaillent sur ces télécommunications térahertz (NTT Japon, Universités d'Osaka, de Marburg, IEMN Lille, etc.). Pour l'émission, une photodiode très rapide, comme une diode UTC, est excitée par le battement optique de deux faisceaux laser. Ce battement est de l'ordre de quelques centaines de gigahertz. Le faisceau d'un des deux lasers est modulé par l'information à transporter au moyen d'un modulateur électro-optique. Le faisceau térahertz est mis en forme puis focalisé sur le détecteur à l'aide de systèmes quasi-optiques, comprenant entre autres des miroirs paraboliques. La détection du signal est réalisée par moyen électro-optique ou par des diodes Schottky. Aujourd'hui,...
Cet article fait partie de l’offre
Physique Chimie
(201 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Télécommunications
BIBLIOGRAPHIE
-
(1) - GU (J.), HAN (J.), TIAN (Z.T.), OUYANG (C.), HE (M.), ZHANG (W.) - Metamaterials : paving the way for terahertz technology. - Terahertz Science and Technology, no 6, p. 66 (2013).
-
(2) - WITHAY ACHUMNANKUL (W.), ABBOTT (D.) - Metamaterials in the terahertz regime. - IEEE Photonic Journal, no 1, p. 99-118 (2009).
-
(3) - ROGALSKI (A.), SIZOV (F.) - Terahertz detectors and focal plane arrays. - Opto-Electronics Review, no 19, p. 346-404 (2011).
-
(4) - WU (Q.), ZHANG (X.-C.) - Ultrafast electro-optic field sensors. - Appl. Phys. Lett., no 68, p. 1604 (1996).
-
(5) - HAN (P.Y.), ZHANG (X.-C.) - Coherent, broadband midinfrared terahertz beam sensors. - Appl. Phys. Lett., no 73, p. 3050 (1998).
-
(6) - HORI (T.), HIROMOT (N.) - Characteristics...
ANNEXES
Liste des FEL (Free Electron Laser ) http://sbfel3.ucsb.edu/www/vl_fel.html
Société GCM http://www.terahertz.co.uk/
Labex FOCUS (Focal Plays for Universe Sensing ) http://ipag.osug.fr/Focus-Labex
HAUT DE PAGE
Antennes photoconductrices
Teravil (Lituanie) http://www.teravil.lt
Batop (Allemagne) http://www.batop.de
Menlo Systems (Allemagne) http://www.menlosystems.com
GigaOptics (Allemagne) http://www.laserquantum.com
Zomega (USA) http://www.zomega-terahertz.com
Del Mar Photonics (USA) http://www.delmarphotonics.com
Te TechS Inc. (Canada) http://www.tetechs.com
Hamamatsu (Japon) http://www.hamamatsu.com
Oplan (Chine) http://www.oplanchina.com
AMO GmbH (Allemagne) http://www.amo.de
Corps noirs
CI Systems (Israel) http://www.ci-systems.com
Newport Corp. (USA) http://www.newport.com
Électro-Optical...
Cet article fait partie de l’offre
Physique Chimie
(201 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive