Présentation

Article

1 - SUSCEPTIBILITÉS ÉLECTRIQUES NON LINÉAIRES DES CRISTAUX NON LINÉAIRES

2 - POLARISATION

3 - GÉNÉRATION DE FRÉQUENCES

4 - CONCLUSION

| Réf : AF3278 v1

Génération de fréquences
Cristaux et optique laser non linéaires

Auteur(s) : Georges BOULON

Date de publication : 10 janv. 2006

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

Le potentiel des effets d’optique non linéaires a véritablement été découvert avec les premières sources laser et leurs champs électriques monochromatiques intenses. L’ensemble des phénomènes exploités et bien connus en optique non linéaire, comme la génération du second du troisième harmonique, l’effet Pockels, l’effet Kerr, la diffusion Raman stimulée, la conjugaison de phase, sont abordés tour à tour dans cet article. Les cristaux à propriétés optiques non linéaires, notamment les monocristaux biréfringents uniaxes ou à domaines périodiques alternés, ont ainsi donné un essor important à l’optique laser non linéaire.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Georges BOULON : Professeur des universités, université Claude-Bernard (Lyon-1) - Laboratoire de physico-chimie des matériaux luminescents

INTRODUCTION

Les cristaux à propriétés optiques non linéaires jouent un rôle essentiel dans le développement récent des nouvelles sources laser. Les principales connaissances de base nécessaires à la compréhension de leur fonctionnement ont été introduites à partir des susceptibilités électriques non linéaires d’ordre 2 et 3 des solides donnant naissance aux mécanismes de génération du second harmonique (SHG), de l’effet Pockels, de l’effet Faraday, du mélange de sommes et de différences de fréquences, d’amplification paramétrique optique (OPA), d’oscillation paramétrique optique (OPO) ou encore d’émission Raman stimulée.

Ce dossier sur les cristaux et l’optique non linéaire fait partie d’un ensemble relatif à la présentation générale des sources laser à l’état solide qui inclut également la physique du laser Sources lasers à l’état solide. Fondements, la luminescence cristalline Luminescence cristalline appliquée aux sources laserset la génération des impulsions laser ultrabrèves Génération d’impulsions lasers ultracourtes jusqu’à la femtoseconde [AF 3 283].

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-af3278


Cet article fait partie de l’offre

Physique Chimie

(202 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

3. Génération de fréquences

3.1 Génération du second harmonique par les cristaux uniaxes du type

L’expression de la puissance de sortie P(2ω) du faisceau de pulsations 2ω peut être calculée de la manière suivante à partir de l’expression du champ électrique E(2ω) :

Il suffit de multiplier ensuite E(2ω) par son complexe conjugué E*(2ω) pour obtenir P(2ω) :

avec :

ω = 2πν et ν
 : 
la fréquence de la lumière
c
 : 
la célérité de la lumière
 : 
la longueur du cristal effectivement utilisé pour le doublage de fréquence
S
 : 
la section droite du faisceau laser.

Il apparaît clairement que P (2ω) admet un maximum si n(ω) = n(2ω).

Cette condition peut être obtenue avec certains cristaux biréfringents uniaxes (un seul axe optique selon lequel ce cristal est isotrope) comme LiNbO3, LiTaO3, KNbO3, KTiOPO4 (KTP), BaTiO3, Ba2NaNb5O15 (BNN), K3Li2 – xNb5 + xO15 + 2x. Sur la figure 5, on voit que la condition est satisfaite dans LiNbO3 pour le rayon ordinaire à la fréquence ω, et pour le rayon extraordinaire à la fréquence...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Physique Chimie

(202 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Génération de fréquences
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - BOYD (R.W.) -   Nonlinear Optics, Handbook of Laser Technology and Applications. Vol. l: principles  -  . C. Webb et J.Jones (éd.), Institute of Physics Publishing, Bristol Philadelphia, pp. 161-184 (2004).

  • (2) - PELLÉ (F.) -   Laser Based on Nonlinear Effects, Handbook of Laser Technology and Applications. Vol. II: Laser Design and Laser Systems  -  . C. Webb et J.Jones (éd.), Institute of Physics Publishing, Bristol Philadelphia, pp. 431-468 (2004).

  • (3) - YARIV (A.) -   Optical Waves in Crystals  -  . Wiley, New York (1984).

  • (4) - COURTOIS (J.Y.) -   « Optique non linéaire ». Dans Les lasers et Leurs Applications Scientifiques et Médicales.  -  C. Fabre et J.P. Pocholle (éd.), Les Éditions de Physique (1996).

  • (5) - POCHOLLE (J.P.), VIVIEN (D.) -   Les matériaux laser pour l’optique non linéaire.  -  Numéro spécial de l’Actualité Chimique, Les matériaux du fondamental aux applications. Numéro publié en collaboration avec la SF2M et le CNRS (mars 2002).

  • ...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Physique Chimie

(202 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS