Présentation

Article

1 - STRUCTURE D’UN SYSTÈME DE TRANSMISSION OPTIQUE

2 - SOURCES ET MODULATEURS

  • 2.1 - Sources et bruit des sources
  • 2.2 - Modulateurs

3 - DÉTECTION

4 - AMPLIFICATION OPTIQUE

5 - LES SYSTÈMES

6 - SYSTÈMES UTILISANT LES SOLITONS

  • 6.1 - Qu’est-ce qu’un soliton ?
  • 6.2 - Phénomènes affectant la transmission des solitons
  • 6.3 - Traitement en ligne
  • 6.4 - Évolution de la transmission par solitons

| Réf : TE7115 v1

Amplification optique
Systèmes de transmission sur fibre optique

Auteur(s) : Michel JOINDOT, Irène JOINDOT

Date de publication : 10 août 1999

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Auteur(s)

  • Michel JOINDOT : Ancien élève de l’École polytechnique - Ingénieur en Chef des télécommunications

  • Irène JOINDOT : Ingénieur ISMRA (Institut des sciences de la matière et du rayonnement) (ex. ENSEEC) - Docteur de l’Université de Montpellier, habilitée à diriger les recherches

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

Comparée aux autres supports de transmission existants, la fibre présente une atténuation quasiment constante sur une énorme plage de fréquences (plusieurs milliers de gigahertz) et offre ainsi l’avantage de bandes passantes gigantesques, permettant d’envisager aujourd’hui la transmission de débits numériques très importants (plusieurs terabit/seconde) exigés par la multiplication des services et les besoins accrus de transmission d’images . Très vite également, il est apparu que les systèmes optiques permettaient, par rapport aux systèmes sur câble coaxial de capacité équivalente, un gain notable sur la distance entre répéteurs-régénérateurs, qui passait de quelques kilomètres à quelques dizaines de kilomètres. À partir de 1978 furent installés des systèmes travaillant à la longueur d’onde optique de 0,8 µm, acheminant un débit compris entre 50 et 100 Mbit/s, avec un espacement entre répéteurs de 10 km, c’est-à-dire trois fois plus environ que les systèmes sur câble coaxial de capacité équivalente.

La seconde génération de systèmes de transmission sur fibre optique, apparue dans les années 1980, découle directement de la mise au point de la fibre monomodale et du laser à semi-conducteur à 1,3 µm, longueur d’onde pour laquelle la dispersion chromatique (c’est-à-dire la distorsion induite sur les signaux par la propagation) est minimale. Des débits supérieurs à 1 Gbit/s, avec un espacement entre répéteurs de plusieurs dizaines de kilomètres, sont alors atteints. Les portées de ces systèmes sont limitées par les pertes de la fibre, 0,5 dB/km dans le meilleur cas, et l’idée apparaît alors de développer des sources émettant à la longueur d’onde de 1,55 µm pour laquelle l’atténuation est minimale. Néanmoins, ce gain est détruit par l’effet de la dispersion chromatique, toutes les longueurs d’onde ne se propageant pas à la même vitesse. Cette dispersion chromatique du matériau de la fibre est beaucoup plus forte qu’à 1,3 µm et c’est d’elle que provient alors la limitation de la bande passante et donc du débit. Des progrès simultanés tant sur les lasers émettant sur un seul mode que sur le milieu de transmission (fibres à dispersion décalée) apporteront des solutions à ces problèmes et les premiers systèmes travaillant à 1,55 µm apparaîtront à la fin des années 1980, avec un débit supérieur à 2 Gbit/s.

Apparus à la fin des années 1980 et devenus très rapidement des produits industriels, les amplificateurs à fibre vont apporter un bouleversement considérable dans le domaine des communications par fibre optique : insérés dans la ligne de transmission, ils permettent de compenser l’atténuation de la fibre et donc d’augmenter la portée des systèmes de transmission, au prix de l’addition de bruit . Utilisés comme préamplificateurs, ils augmentent la sensibilité des récepteurs optiques. Enfin, leur bande passante énorme (30 nm et même bien plus aujourd’hui) permet d’envisager l’amplification simultanée de plusieurs porteuses optiques juxtaposées dans le spectre, constituant ce que l’on appelle un multiplex. Ainsi naît le concept de multiplexage en longueur d’onde (WDM Wavelength Division Multiplexing) ; chaque fibre transportant un multiplex de N canaux est alors équivalente en capacité à N fibres transportant chacune un canal, et il est aisément concevable que cette approche permet potentiellement d’augmenter la capacité d’un réseau de manière très importante sans modifier son infrastructure physique. Des systèmes utilisant cette technique, pour la plupart avec un débit de 2,5 Gbit/s par canal, sont aujourd’hui en cours d’installation par tous les grands opérateurs mondiaux dans leurs réseaux de transport pour faire face à la croissance du trafic attendue dans les toutes prochaines années. Des systèmes à N ×10 Gbit/s sont déjà proposés par les industriels et installés et l’évolution vers des multiplex à très grand nombre de canaux et(ou) à grande capacité par canal va selon toute vraisemblance se poursuivre dans les prochaines années, pour faire face au besoin de croissance de capacité que connaissent les réseaux de transport comme les réseaux métropolitains.

Enfin, la transmission optique permet aujourd’hui d’atteindre une qualité (exprimée en termes de taux d’erreurs) très supérieure à celle des systèmes antérieurs, en particulier des faisceaux hertziens.

La fibre optique est également utilisée dans les réseaux de vidéocommunications pour transmettre un multiplex de sous-porteuses électriques qui modulent en intensité une porteuse optique. Chacune de ces sous-porteuses, qui correspond à un canal de télévision, est elle-même modulée de manière analogique (modulation de fréquence, modulation d’amplitude à bande latérale unique) ou numérique (modulation de phase, modulation d’amplitude sur deux porteuses en quadrature...).

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-te7115


Cet article fait partie de l’offre

Optique Photonique

(221 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

4. Amplification optique

L’amplification est une fonction essentielle en transmission et d’importants efforts de recherche ont été consacrés au cours des trente dernières années à la mise au point d’amplificateurs optiques. L’amplificateur à semi-conducteurs, qui a fait l’objet de nombreux travaux depuis le début des années 1970, n’a pas connu beaucoup de développements en tant qu’amplificateur inséré dans un système de transmission, si l’on excepte quelques démonstrations dans la fenêtre des 1,3 µm, où il n’existe pas d’amplificateurs à fibre dopée industriellement disponibles.

En revanche, ses caractéristiques lui offrent un large domaine d’utilisation dans tout ce qui touche au traitement optique du signal (multiplexage et démultiplexage, régénération, conversion de longueur d’onde...), la réalisation de ces fonctions mettant en œuvre des effets non-linéaires (modulation croisée du gain, modulation de phase croisée).

L’amplificateur à fibre dopée, apparu à la fin des années 1980, est très rapidement passé au stade industriel : il constitue aujourd’hui un dispositif clé de tous les futurs réseaux de télécommunications optiques . Outre sa fiabilité, ses qualités reposent sur deux caractéristiques essentielles, d’une part sa linéarité (au sens où sa constante de temps ne le rend sensible qu’à la puissance moyenne des signaux qui le traversent, ce qui évite toute distorsion de ces derniers), d’autre part son bruit faible et voisin des limites théoriques.

D’abord, l’amplificateur optique permet de dépasser la limite imposée par l’atténuation de la fibre puisque la puissance envoyée en ligne peut être considérablement augmentée et que le signal peut être réamplifié au cours de sa propagation, au prix il est vrai de l’addition de bruit ; cette utilisation a conduit à la notion de système « amplifié », indissociable de la technique de multiplexage en longueur d’onde. L’amplificateur en ligne se substitue aux répéteurs-régénérateurs...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Optique Photonique

(221 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Amplification optique
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - JOINDOT (I.) et (M.) et douze coauteurs -   Les Télécommunications par fibres optiques.  -  Collection Technique et Scientifique des Télécommunications, Dunod 1996.

  • (2) - DESURVIRE (E.) -   Erbium Doped Fiber Amplifiers : Principles and Applications.  -  Wiley 1996.

  • (3) - CHRAPLYVY (A.R.) -   Limitations on Lightwave Communications Imposed by Optical Fiber Non linearities.  -  Journal on Lightwave Technology, vol. 8, n 10, nov. 1990.

  • (4) - MARCUSE (D.), CHRAPLYVY (A.R.) et TKACH (R.W.) -   Effects of Fiber Non linearity on Long Distance Transmission  -  . Journal on Lightwave Technology vol. 9 n 1 janv. 1991.

  • (5) - AGRAWAL (P.) -   Non Linear Fiber Optics  -  Gowind Academic Press 1989.

  • (6) - BRANDON (E.), BLONDEL (J.P.) -   Raman limited, truly unrepeatered transmission at 2.5 Gbit/s over 453 km with 30 dBm...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Optique Photonique

(221 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS