Présentation
EnglishAuteur(s)
-
Mathias PEZ : Ingénieur de recherche au Laboratoire Central de Recherches de Thales - Enseignant à l’École Spéciale de Mécanique et d’Électricité (ESME-Sudria) Spécialisation de l’École Nationale Supérieure de l’Aéronautique et de l’Espace (SUPAERO)
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
L’augmentation permanente de la complexité et des performances des composants permet une plus grande intégration de fonctions électroniques au sein d’une même « puce ». Avec le récent développement de techniques numériques de traitement de signaux, les capacités de calculs des composants ont été considérablement accrues. Cette puissance de calcul plus importante implique des débits de communication de plus en plus grands entre processeurs, avec les écrans de visualisation et vers les « capteurs ». La croissance des débits impose à son tour aux ingénieurs de conception l’utilisation de nouvelles techniques d’interconnexions entre composants : les avantages intrinsèques de l’optique (atténuation, cohérence, parallélisme, intégration, etc.) et son utilisation massive dans les réseaux de communications longues distances en font un candidat idéal.
Cet article introduit les technologies d’interconnexions optiques, leurs avantages et inconvénients face aux interconnexions traditionnelles. Après un bref rappel des notions de propagation guidée, les composants appropriés aux interconnexions optiques et des notions sur la conception des interfaces optoélectroniques seront présentés au lecteur, afin qu’il soit en mesure d’appréhender les différentes technologies mises en œuvre au sein des modules optoélectroniques. Cet article décrit l’impact des interconnexions optiques sur l’architecture physique et logicielle des systèmes de traitement et de communication. Les différentes technologies passives et actives sont détaillées pour aboutir à la réalisation de modules intégrés et à leur caractérisation en environnement.
En conclusion, les nouveaux axes de recherches seront introduits. Associés à la très forte croissance de la microélectronique, ils devraient permettre aux interconnexions optiques de s’imposer dans le domaine des communications entre cartes, entre composants et éventuellement au sein même d’un composant.
VERSIONS
- Version courante de avr. 2014 par Mathias PEZ
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Optique Photonique
(222 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
4. Axes de recherches et évolution à long terme
Plusieurs défis technologiques doivent être relevés pour abaisser les coûts et augmenter la viabilité des interconnexions optiques. L’augmentation des débits de transmission nécessite des émetteurs et des récepteurs intégrés et/ou multiplexés en longueur d’onde. L’augmentation du parallélisme des liens mène au développement de matrices de VCSEL et de smart pixels (combinant émetteur et récepteur au sein de la même puce) et à l’utilisation de faisceaux de fibres ou d’interconnexions en espace libre. Le besoin de modules de communication intégrés requiert les nouvelles techniques d’alignement, d’assemblage, d’encapsulation et d’intégration hétérogène développées ci-après.
4.1 Technologies d’assemblage
L’utilisation de technologies d’interconnexions électriques collectives et d’alignement statique des composants permet de réaliser au niveau d’un wafer un grand nombre de pièces avec un nombre réduit d’étapes.
L’alignement passif de composants optoélectroniques, avec des précisions compatibles d’un couplage multimode, est rendu possible grâce aux technologies d’assemblages flip-chip. Ce procédé consiste à retourner le composant (face active vers le support d’assemblage) et à réaliser le report au moyen de billes métalliques servant à la fois de maintien mécanique et de contact électrique (figure 32). Les forces qui s’exercent lors de la refusion des billes de soudure favorisent un autopositionnement du composant reporté en regard de ses plots de contact. Cet effet est particulièrement intéressant pour le report de composants optoélectroniques sur le support d’alignement des fibres. La figure 32 montre un exemple de report d’une barrette de photodiodes au-dessus des V-grooves de positionnement des fibres. L’effet d’autoalignement du flip-chip permet le positionnement automatique de la barrette. La gravure humide du silicium permet d’obtenir des V d’une très bonne précision, dans lesquels viennent se loger les fibres. L’extrémité du V, lui aussi faisant un angle de 54,74o avec l’horizontale, peut servir, une fois métallisé, de miroir de renvoi du faisceau véhiculé par la fibre sur la zone active de la photodiode.
Des solutions entièrement planaires et collectives...
Cet article fait partie de l’offre
Optique Photonique
(222 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Axes de recherches et évolution à long terme
BIBLIOGRAPHIE
-
(1) - PÉREZ (J.P.) - Optique géométrique et ondulatoire. - Éditions Masson (1994).
-
(2) - CHARTIER (G.) - Manuel d’optique. - Éditions Hermes (1997).
-
(3) - SMITH (W.J.) - Modern Optical Engineering. - MacGraw-Hill (1990).
-
(4) - KASTLER (A.) - Optique. - Éditions Masson (1992).
-
(5) - SALE (T.E.) - Vertical Cavity Surface Emitting Lasers. - John Wiley & Sons, Inc. (1997).
-
(6) - MICKELSON (A.E.), BASAVANHALLY (N.R.)., LEE (Y.C.) - Optoelectronic Packaging. - John Wiley & Sons, Inc (1997).
-
(7) - BUCHWALD (A.), MARTIN (K.) - Integrated...
ANNEXES
Optical Fibre Communication : OFCEuropean Materials Research Society : E-MRSWorkshop on Optical Communications and Computer Sciences : WOCCSLasers and Electro-Optics Society : LEOSElectronic Components and Technology Conference : ECTCInternational Electronic Packaging Technical Conference : InterPack (IPACK)
HAUT DE PAGE2 Organismes de normalisation et de standardisation
Dans le domaine des interconnexions optiques, on retrouve la plupart des organismes de normalisation et de standardisation du monde de l’électronique et de la microélectronique. Citons à titre d’exemple :
-
l’Union technique de l’électricité (UTE) ;
-
l’International Electrotechnical Commission...
Cet article fait partie de l’offre
Optique Photonique
(222 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive