Présentation
RÉSUMÉ
Depuis plusieurs années, les nanotechnologies sont en plein développement. Cependant, le terme « nanosciences » serait plus approprié car peu d'applications industrielles ont été réellement développées à ce jour. Le changement d'échelle nécessaire pour mettre au point des nanodispositifs a abouti à une nouvelle approche : l'approche moléculaire. Cette voie est très prometteuse car elle possède de nombreux avantages pour l'expansion des nanotechnologies. Nous proposons d'exposer les principaux développements relatifs à l'élaboration, aux propriétés et aux applications potentielles de nanostructures moléculaires.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleABSTRACT
Nanotechnologies have been booming over the last few years. However the term "nanoscience" would be more appropriate as few industrial applications have been truly developed to date. The necessaru=y change in scale in order to develop nanodevices has generated a new approach: the molecular approach. This pathway is extremely promising as it offers numerous advantages for the expansion of the nanotechnologies. This article presents the main developments concerning the elaboration, properties and potential applications of molecular nanostructures.
Auteur(s)
-
Frédéric CHERIOUX : Directeur de recherche CNRS à l'institut FEMTO-ST (Besançon)
-
Frank PALMINO : Professeur de l’université de Franche-Comté à l'institut FEMTO-ST (Montbéliard)
INTRODUCTION
Depuis plusieurs années, les nanotechnologies sont en plein développement. Cependant, le terme « nanosciences » serait plus approprié car peu d'applications industrielles ont été réellement développées à ce jour. Le changement d'échelle nécessaire pour mettre au point des nanodispositifs a abouti à une nouvelle approche : l'approche moléculaire. Cette voie est très prometteuse car elle possède de nombreux avantages pour l'expansion des nanotechnologies. Nous proposons d'exposer les principaux développements relatifs à l'élaboration, aux propriétés et aux applications potentielles de nanostructures moléculaires.
For several years, nanotechnology has been rapidly developing. However, term “nanoscience” would be more appropriated because only few industrial applications have been developed. The change of scale to develop nanodevices led to a new approach : the molecular approach. This way is very promising for the expansion of nanotechnologies. Here we describe the main developments concerning the preparation, properties and potential applications of molecular nanostructures.
nanosystème moléculaire, auto-assemblage, nanomachine, surface, microscopie en champ proche.
molecular systems, self-assembly, nanomachine, surface, scanning probe microscopies.
VERSIONS
- Version archivée 1 de oct. 2006 par Frédéric CHÉRIOUX, Frank PALMINO
- Version courante de avr. 2019 par Frédéric CHERIOUX, Frank PALMINO
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Nanosciences et nanotechnologies
(150 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
2. Techniques d'observation
Les briques élémentaires constitutives des assemblages moléculaires ont des dimensions nanométriques. Pour les observer ou comprendre les processus mis en jeu et expliquer étape par étape la formation des structures auto-assemblées, il est nécessaire d'observer ces systèmes avec des microscopes possédant une résolution largement inférieure au nanomètre. Très peu de techniques d'observation permettent d'atteindre de telles résolutions tout en restant non destructives pour les molécules. À ce jour, les microscopes en champ proche à effet tunnel STM (Scanning Tunneling Microscopy) et à force atomique AFM (Atomic Force Microscopy) ont permis d'obtenir des images remarquables aussi bien d'atomes, de molécules isolées que de structures auto-assemblées. Les observations à l'aide de ces deux microscopes à balayage et leurs dérivés sont devenues rapidement les techniques “références” d'analyse locale de surface.
2.1 Microscope à effet tunnel (STM)
Le microscope STM a révolutionné la science des surfaces et a permis l’émergence des nanosciences et des nanotechnologies. Il a été inventé en 1981 par G. Binnig et H. Rohrer . Grâce à cette invention, ces deux chercheurs ont obtenu le prix Nobel de physique en 1986, auquel E. Ruska fut associé.
Un microscope à effet tunnel est constitué de quatre parties principales représentées schématiquement sur la figure 1 : un tube piézoélectrique qui effectue le balayage en x, y et z, un échantillon conducteur, une pointe sonde très fine et conductrice, et enfin une unité de contrôle couplée à un ordinateur. L'application d'une différence de potentiel de l'ordre du volt entre la pointe et l'échantillon, séparés d'environ 1 nm par...
Cet article fait partie de l’offre
Nanosciences et nanotechnologies
(150 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Techniques d'observation
BIBLIOGRAPHIE
-
(1) - BINNIG (G.), ROHRER (H.) - The scanning tunneling microscope - Scientific American, Vol. 253, p. 40 (1985).
-
(2) - BINNIG (G.), ROHRER (H.) - Scanning tunneling microscopy - IBM J. Res. Develop., n° 30, p. 355 (1986).
-
(3) - BLÉGER (D.), MATHEVET (F.), KREHER (D.), ATTIAS (A.-J.), BOCHEUX (A.), LATIL (S.), DOUILLARD (L.), FIORINI-DEBUISSCHERT (C.), CHARRA (F.) - Janus-Like 3D Tectons : Self-Assembled 2D Arrays of Functional Units at a Defined Distance from the Substrate - Angew. Chem. Int. Ed. n° 50 p. 6562 (2011).
-
(4) - BINNIG (G.), QUATE (C.F.), GERBER (C.) - Atomic force microscope - Phys. Rev. Lett., n° 56, p. 930 (1986).
-
(5) - SUGIMOTO (Y.), POU (P.), ABE (M.), JELINEK (P.), PÉREZ (R.), MORITA (S.), CUSTANCE (O.) - Chemical identification of individual surface atoms by atomic force microscopy - Nature, n° 446, p. 64 (2007).
-
...
DANS NOS BASES DOCUMENTAIRES
ANNEXES
Observatoire de Micro et NanoTechnologies (OMNT)
C’NANO, centre de compétences en nanoscience
Nanosciences fondation
http://www.fondation-nanosciences.fr/
HAUT DE PAGECet article fait partie de l’offre
Nanosciences et nanotechnologies
(150 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive