Présentation
RÉSUMÉ
L'article se propose de montrer quels types de modèles sont requis pour comprendre, individuellement ou dans leurs interactions, les divers processus liés à la déformation du métal dans un laminoir, pour les optimiser, pour corriger les défauts afin de baisser les coûts. Pour ce faire, il examine les spécificités du procédé, ses enjeux, classe les défauts en géométriques, métallurgiques et de surface et liste les champs disciplinaires requis pour la modélisation. Sans en détailler la dérivation ni les équations, il analyse les hypothèses des modèles existants au regard des réalités physiques et tente de juger de leur apport pratique, avéré ou potentiel.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Pierre MONTMITONNET : Ingénieur de l’École centrale des arts et manufactures, Docteur ès sciences - Directeur de recherches au CNRS - Centre de mise en forme des matériaux (CEMEF) - École des mines de Paris
INTRODUCTION
Engagée dans une course sans fin à la productivité et à la qualité, l’industrie du laminage fait grande consommation de modèles de toutes sortes. Des modèles « on line » sur ordinateurs servant en direct à la conduite de fours ou de laminoirs aux logiciels « off line » les plus sophistiqués, tournant sur ordinateurs parallèles de dernière génération, et destinés à l’accroissement des connaissances techniques, tous les degrés de complexité sont représentés. Beaucoup de champs disciplinaires aussi : thermique, mécanique des fluides, mécanique des solides, acoustique et vibrations, mécanique des matériaux, physique du solide, génie chimique, corrosion...
L’article se propose de montrer quels types de modèles sont requis pour comprendre, individuellement ou dans leurs interactions, les divers processus liés à la déformation du métal dans un laminoir, pour les optimiser afin de baisser les coûts, objectif final de toutes ces analyses. Il n’est pas question ici de détailler la dérivation ni les équations de ces modèles (que l’on trouvera dans les références citées), mais d’analyser leurs hypothèses au regard des réalités physiques, et par là de juger de leurs apports pratiques, avérés ou potentiels. Ces derniers seront détaillés dans l’article [M 3 066].
MOTS-CLÉS
VERSIONS
- Version courante de juin 2016 par Pierre MONTMITONNET
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Mise en forme des métaux et fonderie
(125 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
2. Défauts de laminage. Que modéliser et pourquoi ?
2.1 Grandes catégories
De même que nous avons distingué trois ordres d’impératifs (géométriques, microstructuraux et superficiels), nous aurons trois familles de problèmes ou de défauts.
-
Défauts géométriques (figure 3) (produits hors tolérances) : l’écoulement du métal n’est jamais totalement confiné, car les outils souffriraient trop. On assiste ainsi à des « compétitions » de types différents d’écoulement, comme l’élargissement (spread en anglais) qui concurrence l’allongement du produit (figure 3a, b). C’est ainsi que les extrémités pour les produits longs, les extrémités et les rives pour les produits plats, sont toujours déformées (figure 3c, d) et doivent être chutées (leur somme constitue la mise au mille). Par ailleurs, les machines (cages) et les outils (cylindres, galets), qui ne sont pas infiniment rigides, cèdent élastiquement sous les centaines de tonnes qui leur sont appliquées. Cela perturbe aussi la géométrie des produits, créant des problèmes de profil (figure 3e) et de planéité (figure 3f ) des produits plats (respectivement variations d’épaisseur dans le sens transverse, et écart à la planéité de la surface moyenne de la tôle ou de la bande). Enfin, des problèmes de réglage des outils de production peuvent avoir des conséquences du même ordre (un défaut de parallélisme des cylindres cause le « sabre » : figure 3g, une dissymétrie de diamètre, de vitesse, de frottement entre haut et bas donne le « ski » : figure 3h...).
-
Défauts microstructuraux : ils sont innombrables et bien sûr très dépendants de l’alliage considéré, mais peu spécifiques du laminage. Ce sont des tailles de grains inappropriées ou hétérogènes, des textures (cristallographiques, morphologiques ou topolo-giques) mal orientées, ou excessives, ou insuffisantes, des inclusions non métalliques trop grosses ou trop nombreuses, des porosités, des fissures...
Cet article fait partie de l’offre
Mise en forme des métaux et fonderie
(125 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Défauts de laminage. Que modéliser et pourquoi ?
BIBLIOGRAPHIE
-
(1) - YUN (I.S.), WILSON (W.R.D.), EHMANN (K.F.) - Review of chatter studies in cold rolling. - Int. J. Mach. Tools & Manuf. 38 (1998), 1499-1530.
-
(2) - VATNE (H.E.), MARTHINSEN (R.), ØRSUND (R.), NES (E.) - Modelling recristallization kinetics, grain sizes and textures during multipass hot rolling. - Met. Mat. Trans. A 27A (1996), 4133-4144.
-
(3) - PIETRZYK (M.), KEDZIERSKI (Z.), KUSIAK (H.), MADEJ (W.), LENARD (J.G.) - Evolution of the microstructure in the hot rolling process. - Steel Research 64, 11 (1993), 549-556.
-
(4) - KARHAUSEN (K.), KOPP (R.), DE SOUZA (M.M.) - Numerical simulation method for designing thermomechanical treatments, illustrated by bar rolling. - Scand. J. Met. 20 (1991), 351-363.
-
(5) - NOAT (P.) - Détermination expérimentale et prise en compte dans un code de calcul par éléments finis de l’anisotropie mécanique d’alliages d’aluminium laminés. - Thèse de Doctorat en Science et Génie des Matériaux, École des mines de Paris (1996).
-
...
Cet article fait partie de l’offre
Mise en forme des métaux et fonderie
(125 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive