Présentation

Article

1 - CALCULS DE BASE

2 - CALCUL INTÉGRAL

  • 2.1 - Calcul de primitives
  • 2.2 - Intégrales définies

3 - CALCUL MATRICIEL

4 - RÉSOLUTION D’ÉQUATIONS

5 - CALCUL NUMÉRIQUE

6 - AUTRES DOMAINES

| Réf : A144 v1

Résolution d’équations
Calcul formel

Auteur(s) : Claude GOMEZ

Date de publication : 10 août 1995

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Auteur(s)

  • Claude GOMEZ : Ancien Élève de l’École Centrale de Paris - Docteur Ingénieur - Directeur de Recherche à l’Institut National de Recherche en Informatique et Automatique (INRIA)

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

Le calcul formel est de plus en plus connu dans le monde des scientifiques et en particulier dans celui des ingénieurs. Cela est dû en partie à la « démocratisation » de son utilisation. En effet, il y a quelques années, seule une grosse configuration d’ordinateur permettait de faire fonctionner correctement les systèmes de calcul formel existants. De nos jours, ces systèmes fonctionnent raisonnablement sur des micro-ordinateurs à faible coût (PC, Macintosh). Ensuite, sous l’impulsion du système de calcul formel Mathematica, une grande publicité a été faite pour ces systèmes, les faisant ainsi connaître du grand public scientifique. Aujourd’hui, presque tout utilisateur d’un ordinateur peut se procurer, à un prix raisonnable, un système de calcul formel.

Lorsque l’on vient d’acquérir un tel système, il est très facile, dans un premier temps, de réaliser des calculs simples, du style « calculatrice formelle », mais ensuite on veut généralement aller plus loin et, là, une certaine connaissance du système et de ses limitations est indispensable pour éviter le découragement de l’utilisateur. Du temps de formation est donc nécessaire pour une utilisation optimale d’un système de calcul formel.

Alors, une autre question apparaît : « le calcul formel est-il utile pour moi ? » ; autrement dit, « est-il rentable pour moi de passer du temps à apprendre à utiliser un tel système ? ». Le but de ce chapitre est de répondre à cette question. Pour cela, nous allons passer en revue les principaux domaines des mathématiques dans lesquels le calcul formel peut résoudre des problèmes. Ces domaines sont ceux où l’ingénieur a généralement à travailler : les calculs sur les nombres et les fractions rationnelles, la dérivation, la simplification de formules et les tracés de courbes qui sont la base de tout système de calcul formel, les calculs intégral et matriciel, la résolution d’équations couramment utilisées par les ingénieurs et, enfin, le calcul numérique. Ce dernier est en général la fin du travail de l’ingénieur et le calcul formel s’avère considérablement utile dans ce domaine ; nous insistons particulièrement sur ce point. Pour chaque partie, nous montrons ce que sait faire le calcul formel, comment il le fait et quelles sont ses limitations.

Un grand nombre d’exemples émaillent le chapitre, afin de montrer le fonctionnement du calcul formel à travers un système. Nous avons choisi le système de calcul formel Maple (version V.3) pour cela, car c’est un système très largement diffusé (avec Mathematica), qu’il dispose d’une bibliothèque suffisamment riche et ouverte (le programme source de la plupart des fonctions est accessible) et qu’il est aisément extensible.

Le but de ce chapitre n’est pas la description du système de calcul formel Maple. Nous n’expliquerons pas de façon détaillée la syntaxe et le fonctionnement de ce système. Mais les exemples ont été choisis pour qu’ils soient compréhensibles par le lecteur ; des explications sont données chaque fois que cela est nécessaire.

Fonctionnement d’un système de calcul formel comme Maple. L’utilisateur entre une commande, terminée par un point virgule « ; » dans une syntaxe très naturelle, et Maple affiche la réponse en format haute résolution qui ressemble à la typographie mathématique. Si l’on remplace le point virgule par deux points « : », la réponse n’est pas affichée. Par ailleurs, Maple utilise le principe des packages, c’est-à-dire qu’un grand nombre de commandes sont classées par groupes de même fonctionnalité. Dans ce cas, l’appel de la commande s’écrit <nom du package> [<nom de la commande>], comme linalg[det].

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-a144


Cet article fait partie de l’offre

Mathématiques

(167 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

4. Résolution d’équations

La résolution d’équations ou de systèmes d’équations est au cœur de la plupart des problèmes qui se posent à l’ingénieur. Dans ce domaine, la calcul formel peut jouer un rôle non négligeable.

4.1 Équations non linéaires

Nous avons déjà vu 3.2 la résolution des systèmes d’équations linéaires. Nous parlons ici des équations et des systèmes d’équations non linéaires.

Dans tout système de calcul formel existe généralement une fonction qui permet de résoudre ces types de problèmes ; en Maple, elle s’appelle solve.

Cette fonction permet de résoudre les équations polynomiales de façon exacte jusqu’au degré 4. Si l’on a de la chance, selon le type de polynôme, on peut les résoudre pour des degrés supérieurs, même si le polynôme est irréductible comme celui de l’exemple ci-après.

4x 8 + 48x 7 + 256x 6 + 792x 5 + 1 590x 4 + 2 196x 3 + 2 104x 2 + 1 290x + 459

Exemple

Maple résout ce polynôme sans problème :

solve(4*x^8+48*x^7+256*x^6+792*x^5+1590*x^4+    2196*x^3+2104*x^2+1290*x+459,x);

Mais, en règle générale, les solutions exactes de polynômes de degré supérieur à deux présentent peu d’intérêt. Il vaux mieux se demander ce que l’on cherche à faire avec ces solutions, et un calcul de résultant ou une résolution numérique permettent souvent d’aboutir au résultat.

C’est ce qui a été fait dans un exemple ...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mathématiques

(167 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Résolution d’équations
Sommaire
Sommaire

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Mathématiques

(167 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS