Présentation

Article

1 - TRANSFORMATIONS MARTENSITIQUES

2 - PROPRIÉTÉS THERMOMÉCANIQUES

3 - PRINCIPAUX ALLIAGES INDUSTRIELS

4 - ÉLÉMENTS DE CALCUL D’ACTIONNEURS À MÉMOIRE DE FORME

5 - QUELQUES APPLICATIONS DES ALLIAGES À MÉMOIRE DE FORME

  • 5.1 - Couplage
  • 5.2 - Actionneurs
  • 5.3 - Utilisation des propriétés pseudo‐élastiques

| Réf : M530 v2

Éléments de calcul d’actionneurs à mémoire de forme
Alliages à mémoire de forme

Auteur(s) : Gérard GUÉNIN

Date de publication : 10 janv. 1996

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

Un matériau métallique classique soumis à une contrainte mécanique supérieure à son élasticité se déforme de façon permanente. Mais les alliages à mémoire de forme échappent à cette règle. Un échantillon déformé peut rétrouver sa forme initiale par simple chauffage. Cet article décrit les transformations martensitiques à l'origine de cette propriété, appelée mémoire de forme. Puis il présente les alliages à mémoire de forme existants, et leurs applications industrielles. 

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Gérard GUÉNIN : Ingénieur INSA (Institut National des Sciences Appliquées) - Docteur ès Sciences - Professeur à l’INSA de Lyon

INTRODUCTION

Habituellement, quand un métal ou alliage est soumis à une contrainte mécanique supérieure à sa limite d’élasticité, il subit une déformation plastique qui subsiste après cessation de la contrainte. Cette déformation n’évolue ensuite pas ou très peu lors de traitements thermiques ultérieurs. Les alliages à mémoire semblent échapper à ce comportement familier aux métallurgistes et aux mécaniciens : un échantillon d’un tel alliage, déformé de façon apparemment plastique à une température donnée, peut récupérer intégralement sa forme initiale par simple chauffage. Cette déformation peut atteindre 8 % en traction. Ce phénomène est appelé mémoire de forme, il est associé à une transformation structurale de type martensitique réversible qui se produit entre la température à laquelle on a déformé l’échantillon et celle à laquelle on l’a réchauffé pour qu’il retrouve sa forme. Cette transformation martensitique est aussi à l’origine d’autres propriétés thermoélastiques inhabituelles telles que la superélasticité. La description de ces propriétés nécessite une connaissance élémentaire des transformations martensitiques.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v2-m530


Cet article fait partie de l’offre

Matériaux fonctionnels - Matériaux biosourcés

(206 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

4. Éléments de calcul d’actionneurs à mémoire de forme

4.1 Diagramme effort‐position, paramétrage en température

Un actionneur est un élément qui fournit un travail mécanique par transformation d’une énergie d’un autre type. Dans le cas présent, cette dernière énergie est thermique et le paramètre utilisé sera la température.

Considérons, par exemple, un fil en alliage à mémoire de forme allongé à l’état martensitique par traction de y0 et soumis à une force constante F :

  • le travail mécanique récupérable par chauffage (effet mémoire en présence de la force F ) est donné par F (y0 – ye ) (figure 15a ) où ye est la déformation élastique du fil à l’état austénitique soumis à la force F ;

  • pour que le fil puisse au refroidissement retrouver la situation y0, il est nécessaire d’appliquer un effort minimal fm (si le fil est éduqué fm = 0) et il faut alors fournir au fil un travail mécanique  ;

  • si l’on suppose que pour y0 il existe une butée, on peut boucler le cycle en changeant f m en F à y0 constant.

Le travail mécanique effectivement produit par le fil au cours du cycle est alors représenté par l’aire de la partie bleutée de la figure 15b. Si l’on choisit pour F et y 0 les valeurs maximales admissibles pour l’alliage (respectivement FM et y M), cette aire définit le travail maximal produit par le fil en tant qu’activateur.

Supposons maintenant que l’on associe au fil un élément de rappel qui fournit une force constante F, comprise entre FM et f m . L’ensemble constitue un actionneur qui, selon la valeur de F, peut fournir un travail mécanique à l’extérieur au chauffage et /ou au refroidissement :

  • F = f m , le travail est disponible au chauffage (figure 16a ) ;

  • ...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Matériaux fonctionnels - Matériaux biosourcés

(206 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Éléments de calcul d’actionneurs à mémoire de forme
Sommaire
Sommaire

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Matériaux fonctionnels - Matériaux biosourcés

(206 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS