Présentation
EnglishRÉSUMÉ
Cet article présente les concepts de la maintenance prédictive intelligente pour l’industrie 4.0 dont l'objectif est de prédire l’instant d’occurrence d’une défaillance afin de mettre en œuvre des actions appropriées pour l’éviter. Il fournit une description des concepts de l’industrie 4.0, appelée également "industrie du futur", qui a vu le jour dans le cadre de la transformation numérique des entreprises. Après un rappel de terminologie, les méthodes et outils indispensables pour la conception de cette stratégie de maintenance sont développés. Enfin, un bilan de ses implantations actuelles dans les différentes industries est proposé en soulignant ses avantages et ses inconvénients.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Gilles ZWINGELSTEIN : Ingénieur de l’École nationale supérieure d’électrotechnique, d’électronique, d’informatique, d’hydraulique et des télécommunications de Toulouse (ENSEEIHT), docteur-ingénieur, docteur ès sciences, professeur associé des universités en retraite, université Paris-Est Créteil, France
INTRODUCTION
La prédiction d’une panne sur un équipement est une préoccupation majeure des responsables de la maintenance pour définir les stratégies les plus pertinentes aux plans techniques et économiques. La diffusion des nouvelles technologies numériques utilisant des objets connectés, l’Internet des objets, le cloud, le big data, l’intelligence artificielle et la science des données ont conduit au développement d’un nouveau concept de maintenance mondialement connue sous l’appellation de maintenance prédictive intelligente pour l’industrie 4.0. Cet article présente ses enjeux, ses origines, ses objectifs, ses méthodes et ses outils en y soulignant ses avantages et ses limitations. La première section décrit les enjeux de la maintenance prédictive intelligente pour l’industrie 4.0 qui peuvent être considérés comme des extensions de ceux de la maintenance prévisionnelle classique dans la mesure où la prédiction de la défaillance met en œuvre les composantes de l’industrie 4.0. La définition de l’industrie 4.0 connue également sous les noms de l’industrie du futur ou de « smart factory » est proposée dans la deuxième section. Elle fournit également une description des révolutions industrielles ayant conduit à ce qui correspond à l’industrie 4.0. Elle présente aussi un état des lieux de l’industrie 4.0 pour les grandes et moyennes entreprises en y décrivant les initiatives allemandes, françaises, américaines et chinoises pour soutenir leurs secteurs industriels. Compte tenu du fait que les concepts de l’industrie 4.0 varient suivant les domaines d’application, un exemple générique d’architecture avec ses composantes essentielles est proposé. La troisième section présente la terminologie indispensable à maîtriser pour développer un programme de maintenance prédictive. Parmi les définitions importantes figurent le RUL (Remaining Useful Life) ou DVUR (durée de vie utile restante) et le DEFAD (durée estimée de fonctionnement avant défaillance). Elle insiste en particulier sur la définition de pronostic et de ses métriques qui sont indispensables pour évaluer la confiance dans la prédiction de la défaillance. Les liens avec les contenus de CBM (Condition Based monitoring) et la PHM (Prognostics and Health Management) qui utilisent les mêmes outils que la maintenance prédictive intelligente font également l’objet d’une description succincte.
De nombreuses initiatives pour développer cette stratégie innovante de maintenance ont vu le jour, cette section conclut donc sur un panorama de l’évolution de ce concept. Compte tenu du fait que plusieurs centaines d’outils ont été développés depuis plusieurs décennies grâce aux apports de l’intelligence artificielle, des techniques d’apprentissage et des nouvelles techniques de stockage et traitement de données (data mining, big data, cloud computing, deep learning, machine learning…), la quatrième section est dédiée à la présentation succincte et évidemment non exhaustive de ces principaux outils. La maintenance prédictive intelligente de l’industrie 4.0 conduisant à une optimisation technico-économique, les principaux algorithmes d’optimisation fondés sur l’intelligence distribuée (Swarm intelligence) feront l’objet d’une description succincte (algorithmes génétiques, colonies de fourmis et d’abeilles). La cinquième section présentera un exemple d’application de la maintenance prédictive intelligente développé par les constructeurs d’ascenseurs gérant un parc de plusieurs millions d’ascenseurs pour prédire les défaillances en les équipant de plusieurs centaines de capteurs connectés. Pour faciliter le développement de la maintenance prédictive intelligente, de nombreuses sociétés de services proposent des plateformes IIoT qui permettent d’établir ce type de maintenance. La sixième section offre un panorama non exhaustif de l’offre qui est offerte aux entreprises industrielles par les grandes sociétés de services (IBM, Amazon, Huawei, Siemens…) et détaille leurs principales caractéristiques. La septième section présente, sur la base d’enquêtes réalisées auprès des industriels, leurs points de vue sur la maintenance prédictive intelligente. Ils mettent en exergue les facteurs qui freinent son adoption : le coût des technologies, le manque de compétences en data science et la réticence au changement. La conclusion insiste sur la nécessité d’une parfaite maîtrise des méthodes innovantes offertes par les techniques numériques pour réaliser la prédiction des défaillances. Elle souligne que le niveau de confiance de la prédiction dépend de façon prépondérante du volume de données relatives à une même défaillance, sans oublier une connaissance approfondie des mécanismes physiques de dégradation. Ce sont actuellement les facteurs essentiels qui conditionnent un retour d’investissement satisfaisant pour les utilisateurs potentiels. Le retour d’expérience des expérimentations des plateformes pilotes de l’industrie du futur permettra d’explorer de nouvelles voies pour solutionner ce problème majeur.
MOTS-CLÉS
VERSIONS
- Version courante de juin 2024 par Gilles ZWINGELSTEIN
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Archives > [Archives] Technologies logicielles et architecture des systèmes > La maintenance prédictive intelligente pour l’industrie 4.0 > Méthodes et outils de la maintenance prédictive intelligente
Accueil > Ressources documentaires > Archives > [Archives] Maintenance > La maintenance prédictive intelligente pour l’industrie 4.0 > Méthodes et outils de la maintenance prédictive intelligente
Accueil > Ressources documentaires > Archives > [Archives] Industrie du futur > La maintenance prédictive intelligente pour l’industrie 4.0 > Méthodes et outils de la maintenance prédictive intelligente
Cet article fait partie de l’offre
Management et ingénierie de l'innovation
(430 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
4. Méthodes et outils de la maintenance prédictive intelligente
Le développement de la maintenance prédictive intelligente pour l’industrie 4.0 nécessite d’une part de mettre en œuvre des méthodes et des outils permettant de prédire et d’estimer de façon très fiable l’instant de la défaillance et d’autre part de sélectionner la stratégie de maintenance la plus adaptée aux objectifs technico-économiques des entreprises.
4.1 Panorama des méthodes d’estimation du RUL
Des centaines de méthodes ont été développées pour estimer le RUL et ont fait l’objet de très nombreuses publications . Une classification est proposée sur la figure 19 sachant qu’il existe dans la littérature d’autres méthodes de classification. Ces méthodes feront l’objet de descriptions succinctes dans cette section qui couvrira les méthodes basées sur les lois physiques (model-driven), l’exploitation des données (data-driven), les expérimentations et les méthodes hybrides.
HAUT DE PAGE...
Cet article fait partie de l’offre
Management et ingénierie de l'innovation
(430 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Méthodes et outils de la maintenance prédictive intelligente
BIBLIOGRAPHIE
-
(1) - PROTAIS (M.) - La maintenance, élément clé de l’usine du futur. - Usine Nouvelle (2018).
-
(2) - BAUER (W.), MAW (S.), MARRENBACH (D.), GANSCHAR (O.) - Industrie 4.0 – Volkswirtschaftliches Potenzial für Deutschland, - Bundesverband Informationswirtschaft, Telekommunikation und neue Medien. V. BITKOM (2014).
-
(3) - Conférence ATOS-SIEMENS - Digital – Industry – Summit organisé par Atos et Siemens, - Palais Brogniart Paris, 2018. (https://www.factoryfuture.fr/siemens-atos-lancent-digital-industry-summit-2018/).
-
(4) - Dossier de presse ministère de l’Économie - Réunir la Nouvelle France Industrielle, - https://www.economie.gouv.fr/files/files/PDF/industrie-du-futur_dp.pdf (2015).
-
(5) - Dossier de presse - Inauguration du Factory Lab Saclay, - http://www.cea.fr/presse/Documents/DP/2016/dossier-presse-inauguration-factory-lab.pdf (2016).
-
...
DANS NOS BASES DOCUMENTAIRES
-
Introduction au Big data – Opportunités, stockage et analyse des mégadonnées.
-
L’essor des objets connectés : Introduction.
-
...
Matlab Tool box Predictive Maintenance Toolbox, [Logiciel], Les Montalets 2 rue de Paris, 92196 Meudon Cedex, Meudon, France.
APM Health IoT platform, [Logiciel] General Electric, San Ramon, Californie, États-Unis.
Watson IoT platform, [Logiciel], Compagnie IBM France, 17 avenue de l’Europe 92275 Bois-Colombes Cedex.
Manufacturing Predictive Maintenance Platform, [Logiciel], Huawei Technologies France, 18 Quai du Point du Jour, 92100 Boulogne-Billancourt, France.
Mindsphere Système d’exploitation IoT, [Logiciel], Siemens France, 40 Avenue des Fruitiers, 93210 Saint-Denis, France.
Amazon Web Services plate-forme IoT Amazon [Logiciel], Tour Carpe Diem, 31 Place des Corolles 92400 Courbevoie.
Google cloud IoT plate-forme, [Logiciel], Google France, 8 r Londres, 75009 Paris.
Microsoft Azure IoT plate-forme, [Logiciel], Microsoft France Paris, 39 Quai du Président Roosevelt, 92130 Issy-les-Moulineaux.
HAUT DE PAGE
Site de la plateforme FactoryLab : http://www.factorylab.fr
Le programme Nouvelle France Industrielle (NFI) : https://www.gouvernement.fr/action/la-nouvelle-france-industrielle
Les 34 feuilles de route de la Nouvelle France Industrielle (NFI) : http://www.economie.gouv.fr/files/files/PDF/nouvelle-france-industrielle-sept-2014.pdf
Le...
Cet article fait partie de l’offre
Management et ingénierie de l'innovation
(430 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive