Présentation

Article

1 - CONTEXTE

2 - MODIFICATION ET SYNTHÈSE DES MATÉRIAUX PAR MÉLANGE IONIQUE (OU MIXING)

3 - MODIFICATION ET SYNTHÈSE DES MATÉRIAUX PAR IMPLANTATION

4 - OUTIL DE CONTRÔLE DE L'ORDRE LOCAL

5 - SYNTHÈSE DE NANOSTRUCTURES

6 - CONCLUSION

| Réf : M4396 v1

Synthèse de nanostructures
Faisceaux d'ions - Applications

Auteur(s) : Franck FORTUNA, Erwan OLIVIERO, Marie-Odile RUAULT

Date de publication : 10 sept. 2010

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

Procédé d’ingénierie des matériaux, l’implantation ionique permet de modifier non seulement les propriétés chimiques de la cible, mais également les structurelles. Il s’agit fondamentalement d’un processus hors équilibre thermodynamique, puisqu’en théorie il est possible d’introduire tout élément dans tout matériau, même non compatible chimiquement. Cet article aborde plusieurs domaines d’applications des faisceaux d’ions, certains comme outils de contrôles et de modifications des matériaux, avec ou sans analyse, et d’autres comme outils d’analyse permettant la compréhension de l’interaction ions/matière.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

  • Franck FORTUNA : Centre de Spectrométrie Nucléaire et Spectrométrie de Masse (CSNSM), CNRS, université Paris-Sud Centre d'Orsay

  • Erwan OLIVIERO : Centre de Spectrométrie Nucléaire et Spectrométrie de Masse (CSNSM), CNRS, université Paris-Sud Centre d'Orsay

  • Marie-Odile RUAULT : Centre de Spectrométrie Nucléaire et Spectrométrie de Masse (CSNSM), CNRS, université Paris-Sud Centre d'Orsay

INTRODUCTION

Les faisceaux d'ions peuvent être vus comme un outil polyvalent permettant d'aborder aussi bien la synthèse de nouveaux matériaux, que l'analyse structurale et chimique de systèmes complexes. Leur emploi apporte un paramètre supplémentaire à l'expérimentateur pour parcourir les diagrammes de phase : le système restant figé (à la manière d'une trempe) dès que l'on coupe le faisceau.

Après avoir décrit les mécanismes physiques impliqués (pouvoir d'arrêt, création de défauts), le formalisme mathématique et la mise en œuvre des faisceaux d'ions (production, tri en masses, dispositifs expérimentaux) dans l'article précédent [M 4 395], nous aborderons ici plusieurs domaines d'applications des faisceaux d'ions :

  • vus en tant qu'outils de contrôles et de modifications des matériaux, suivis ou non d'analyses. Nous présenterons plusieurs installations qui permettent de combiner les deux modes (analyse et modification contrôlée des matériaux), donnant ainsi accès à l'étude in-situ de la synthèse de nouveaux matériaux ;

  • présenter les bases nécessaires à la compréhension de l'interaction ions/matière (déjà vue dans le [M 4 395]), ainsi qu'une vue globale du domaine à travers des exemples (sans prétention à l'exhaustivité).

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-m4396


Cet article fait partie de l’offre

Étude et propriétés des métaux

(202 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

5. Synthèse de nanostructures

La capacité à concevoir, élaborer, utiliser les matériaux à l'échelle nanométrique est un des moteurs majeurs des technologies du XXIe siècle. De nombreuses innovations, dans le domaine des matériaux du futur et de leurs applications, résultent des avancées de la nanotechnologie (manipulation à l'échelle atomique, structuration et synthèse fonctionnelle de nano objets…).

Par exemple, dans la course à la miniaturisation des circuits électroniques (voir encadré 3), l’élaboration de composants implique déjà, de nos jours, la mise en œuvre d’objets de dimensions nanométriques, dont les propriétés physiques sont profondément modifiées par rapport à celles de l'état massif.

Aussi, l'étude des propriétés physico-chimiques des objets de basse dimensionnalité, présente un grand intérêt, tant sur le plan technologique (stockage de données, dispositifs tout optique, guides d'onde, nanotribologie, catalyseurs à haute performance…), que fondamental (effets de taille et impact de l’environnement local sur la structure des agrégats et leurs propriétés physiques).

5.1 Nanoprécipités métalliques en matrice protectrice

Les matériaux nanocomposites constitués d'agrégats, dispersés dans une matrice protectrice, suscitent un intérêt croissant et motivent de nombreuses études. Leur élaboration présente néanmoins des difficultés ; en particulier, dans la mise en œuvre de méthodes de synthèse qui permettent de maîtriser la taille, la forme, la distribution en taille et l'organisation spatiale des agrégats. Et ceci, tout en conférant au matériau final, une bonne tenue mécanique et une bonne stabilité chimique et thermique.

  • Les nanoparticules peuvent être élaborées par des voies chimiques (organométalliques, co-précipitation, technique de micelle inverse (voir encadré 6)…), ou physiques, en réduisant progressivement la taille d’objets macroscopiques (évaporation, pulvérisation, ablation laser, lithographie haute résolution à l’aide de faisceaux d'ions focalisés (FIB Focussed Ion Beams)), ou encore en les construisant atome par atome (par exemple, sous la pointe de microscopes à balayage (STM Scanning Tunnelling Microscopes), ou à force atomique...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Étude et propriétés des métaux

(202 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Synthèse de nanostructures
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - KOSTLER (H.), TRAVERSE (A.), NEDELLEC (P.), DUMOULIN (L.), RUAULT (M.-O.), SCHAPBACH (L.), BURGER (J.P.), BERNAS (H.) -   A new hydride : MgHx prepared by ion implantation  -  Journal of Physics : Condens. Matter, Insitut Of Physics (IOP) Publishing Ltd, 3 , pp. 8767-8776 (June 1991).

  • (2) - RAUSCHENBACH (B.), KOLITSCH (A.), HOHMUTH (K.) -   Iron nitride phases formed by nitrogen ion implantation and thermal treatment  -  Physica Status Solidi A, n° 2, Wiley Interscience, 80, pp. 471-475 (decembre 1983).

  • (3) - HANSEN (M.), ANDERKO (A.K.) -   Constitution of Binary Alloys  -  (constitution des alliages binaires), Metallurgy and metallurgical engineering series, Genium Publishing Corporation Amsterdam & new York., 2e édition, 1305 p, © 1958 (1985).

  • (4) - HANSEN (M.), ELLIOT (R.P.) -   Constitution of Binary Alloys : first supplement  -  (constitution des alliages binaires, suppléments à [81]), Schenectady, N.Y. : Genium, 874 p (1986).

  • (5) - SAWADA (K.), PAI (C.S.), LAU (S.S.), POKER (D.B.), BUCHAL (CH.) -   Ion mixing of Ni-Pt films on Si  -  Journal...

ANNEXES

  1. 1 Annuaires

    Cet article est réservé aux abonnés.
    Il vous reste 94% à découvrir.

    Pour explorer cet article
    Téléchargez l'extrait gratuit

    Vous êtes déjà abonné ?Connectez-vous !


    L'expertise technique et scientifique de référence

    La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
    + de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
    De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

    Cet article fait partie de l’offre

    Étude et propriétés des métaux

    (202 articles en ce moment)

    Cette offre vous donne accès à :

    Une base complète d’articles

    Actualisée et enrichie d’articles validés par nos comités scientifiques

    Des services

    Un ensemble d'outils exclusifs en complément des ressources

    Un Parcours Pratique

    Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

    Doc & Quiz

    Des articles interactifs avec des quiz, pour une lecture constructive

    ABONNEZ-VOUS