Présentation

Article

1 - TECHNOLOGIE CÉRAMIQUE ET COMPOSANTS ÉLECTRONIQUES

2 - TECHNOLOGIE DE FABRICATION ET FRITTAGE

3 - PROPRIÉTÉS DES MATÉRIAUX CÉRAMIQUES

4 - ÉLABORATION DE FONCTIONS

5 - CONCLUSIONS

| Réf : E1820 v2

Conclusions
Céramiques pour composants électroniques

Auteur(s) : F. Jean-Marie HAUSSONNE

Date de publication : 10 juin 1996

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

Auteur(s)

  • F. Jean-Marie HAUSSONNE : Ingénieur de l’École Nationale Supérieure de Céramique Industrielle de Sèvres - Professeur des Universités, École d’Ingénieurs de Cherbourg rattachée à l’Université de Caen Basse Normandie

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

INTRODUCTION

Une céramique est un matériau inorganique polycristallin, présentant une microstructure complexe de grains et de joints de grains, et élaboré par une technologie particulière appelée technologie céramique. La structure et la microstructure en sont définies lors du cycle d’élaboration, qui transforme des matières premières le plus souvent pulvérulentes en un matériau dense, idéalement exempt de pores, et dont les propriétés tiennent de celles de ses grains mais aussi de son hétérogénéité. La phase technologique clé de l’élaboration d’une céramique est son frittage, qui est le cycle température-atmosphère‐temps au cours duquel les grains initialement mis au contact les uns avec les autres par des opérations de mise en forme se lient à la suite de l’action de divers mécanismes de transport pour ensuite acquérir la microstructure recherchée.

Le terme générique céramique recouvre des domaines aussi variés que celui des céramiques traditionnelles (réfractaires, sanitaires, tuiles et briques, carreaux, etc.) ou que celui des céramiques dites techniques : céramiques utilisées dans le cycle des combustibles nucléaires, céramiques à applications thermomécaniques ou céramiques à applications électroniques.

Les technologies d’élaboration de ces divers composants présentent de nombreux points communs, mais des spécificités d’applications ou de conception peuvent amener à avoir dans chaque cas particulier une approche sensiblement différente quant aux paramètres à étudier et à maîtriser. Il s’agit en fait de domaines techniques différents, même si les organigrammes d’élaboration sont semblables et la connaissance des autres indispensables à la maîtrise et à l’évolution de chaque domaine propre.

Cette spécificité tient essentiellement au fait que les propriétés recherchées du matériau tiennent autant de sa nature que de la technologie de mise en forme et de frittage. Selon les cas, les propriétés recherchées étant très éloignées les unes des autres, les philosophies menant à leur obtention sont applicables également aux diverses familles de céramiques pour l’électronique, bien qu’il soit souvent commode de les classer ensemble.

Les technologies céramiques des domaines traditionnels ou des domaines des composants et matériaux à applications thermomécaniques ou nucléaires ont été développées, car elles permettent d’obtenir soit des objets d’une forme et d’une fonctionnalité données pour un prix faible, soit des propriétés mécaniques alliées par exemple à un poids ou à une réfractarité remarquables, ou bien permettent la manipulation et la mise en œuvre d’éléments fissibles. Par contre, dans le cas des céramiques pour l’électronique, ce sont directement les propriétés liées à la structure du matériau et aux possibilités de transformation de ces propriétés par en particulier des substitutions qui sont le plus souvent exploitées, de même que la possibilité offerte par la technologie céramique de réaliser des microstructures complexes formées éventuellement de l’assemblage de matériaux distincts.

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v2-e1820


Cet article fait partie de l’offre

Électronique

(227 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

5. Conclusions

Nous n’avons pu au cours de cet article qu’évoquer certains des aspects de la science ou de la technologie céramiques. Des éléments très importants tels que la notion de fiabilité ont été laissés dans l’ombre. Pour plus de détails concernant chacune des familles de composants passifs céramiques évoqués, le lecteur se reportera aux développements qui leur sont plus particulièrement consacrés, aux références rassemblées en fin de l’article, ou bien aux catalogues des constructeurs.

Cet article aura mis en évidence l’importance des céramiques dans le domaine des composants électroniques. Il est de plus en plus évident que cette importance ne fait que croître, étant donné toutes les spécificités qui les distinguent des autres matériaux.

Le tableau 7 rassemble, d’une manière non exhaustive, les compositions de céramiques utilisées ainsi que certains résultats de travaux de recherches. On peut constater combien sont nombreuses les applications et les potentialités. Pour un certain nombre de matériaux, le dopage et la technologie céramique permettent également d’atteindre des propriétés différentes et parfois même, a priori, contradictoires.

Souvent, la céramique est le seul matériau possible pour nombre de composants ou systèmes. Les possibilités potentielles des composants actifs sont même limitées par le composant céramique qui leur est obligatoirement associé. Si l’effort de recherche et de développement a été essentiellement consacré aux composants actifs, ceux-ci possèdent maintenant des potentialités, en particulier de vitesse, qui ne peuvent être exploitées dans l’état actuel des connaissances. Tout progrès à venir concernant l’exploitation des circuits intégrés très rapides et les systèmes à haute densité passe obligatoirement par une étude concernant l’élaboration de céramiques qui permettent en particulier l’interconnexion des circuits actifs, la conception de composants rassemblant des fonctions passives complexes, sans oublier l’émergence des composants passifs dits « intelligents ».

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Électronique

(227 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Conclusions
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - KINGERY (W.D.) -   Introduction to Ceramics.  -  J. Wiley et Sons, (1960).

  • (2) - BUCHANAN (R.C.) -   Ceramic Materials for Electronics.  -  Marcel Dekker, (1986).

  • (3) - LEVINSON (L.M.) -   Electronic Ceramics.  -  Marcel Dekker, (1988).

  • (4) - WASER (R.) -   Electroceramics IV, Proceedings of the 4 th International Conference on Electronic Ceramics and Applications.  -  Vol. 1 et 2, Verlag des Augustinus Buchhandlung, Aachen, (1994).

  • (5) - NIEPCE (J.C.), HAUSSONNE (J.M.) -   BaTiO3 : Matériau de base pour les condensateurs céramiques.  -  Septima, (1994).

  • (6) - HAUSSONNE (J.M.) -   Les matériaux sol-gel et organométalliques pour couches minces.  -  Septima, (1993).

  • ...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Électronique

(227 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS