Présentation
Auteur(s)
-
Jean-Pierre CONTOUR : Unité mixte de physique CNRS/Thomson-CSF
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
D epuis la découverte de la supraconductivité du mercure en 1911, dans le laboratoire du Professeur H.K. Onnes à Leyde (Pays-Bas), la supraconductivité a continuellement mobilisé les physiciens tant du point de vue théorique que du point de vue expérimental (figure 1), pour lequel les recherches ont été associées à l’obtention des très basses températures. H. Kamerlingh Onnes qui avait réussi à liquéfier l’hélium en 1908 et à le maintenir en dessous de sa température de liquéfaction (4,2 K) voulait étudier la variation de la résistivité des métaux en dessous de 20 K. Le mercure étant un des métaux les plus faciles à purifier, c’est en étudiant sa résistivité à très basse température qu’il découvrit en 1911 avec G. Holtz que ce métal passe dans un état où il n’offre plus aucune résistance au passage du courant électrique au-dessous d’une température de 4,15 K, appelée température critique (Tc). L’année suivante, il constata qu’un courant électrique ou un champ magnétique suffisamment intenses restauraient la résistivité du métal. Dans les années qui suivirent on découvrit que de nombreux métaux deviennent supraconducteurs à très basse température à l’exception des métaux alcalins et des métaux nobles. La plus haute température critique dans les métaux purs fut atteinte en 1930 avec le niobium (Tc = 9,2 K), à la même époque on découvrit que la supraconductivité peut également être observée dans des alliages intermétalliques. En 1933, W. Meissner observe que les matériaux supraconducteurs expulsent un champ magnétique faible, en se comportant comme des corps diamagnétiques parfaits. L’élévation des températures critiques se poursuivit régulièrement jusqu’en 1973 avec la température « record » de 23,3 K observée pour l’alliage Nb3Ge. Dans les années 1970, on découvrit la supraconductivité des chalcogénures de molybdène (phase de Chevrel, ), et celle d’oxydes mixtes de lithium et de titane puis de baryum et de plomb dopé au bismuth (Tc ≈ 13 K). En 1980, K. Bechgaard et D. Jérome observèrent le comportement supraconducteur de certains composés organiques à caractère unidimensionnel ( ), l’intérêt de l’étude de ces matériaux se situant principalement dans la compréhension des mécanismes de la supraconductivité. Enfin, en 1991, après la découverte de la supraconductivité haute température des cuprates comme Ba-La-Cu-O et Y-Ba-Cu-O, il a été observé que des molécules polyatomiques de carbone dopées par un métal alcalin, K3C60 et Rb3C60 étaient supraconductrices avec des températures critiques respectivement de 18 et 30 K.
Parallèlement à cette recherche dans le domaine de la science des matériaux, un travail important a été conduit pour élaborer une théorie de la supraconductivité. En 1934, après la découverte de l’effet Meissner, une première théorie macroscopique fut développée par F. et H. London. Cette théorie basée sur un modèle de fluide parfait permit d’introduire l’effet Meissner simplement en utilisant une expression spécifique du courant et les équations de Maxwell, et montra qu’en fait le champ magnétique n’est pas totalement expulsé du supraconducteur, mais pénètre sur une petite profondeur à partir de la surface : on appelle cette longueur la longueur de pénétration de London (λL). Quelques années plus tard, A. Pippard introduisit la notion de longueur de cohérence (ξ0) pour expliquer la différence entre les expériences et la théorie de London (λexp < λL si ξ0 > λL). L’ensemble de la théorie macroscopique fut établie par Ginz-burg et Landau en 1950, qui décrivirent l’ensemble des électrons d’un supraconducteur par un paramètre d’ordre complexe (assimilable à une fonction d’onde macroscopique). La théorie microscopique de la supraconductivité ou théorie BCS fut proposée en 1957 par J. Bardeen, L. Cooper et JR. Schrieffer. Dans ce modèle, les électrons se couplent pour former des paires (paires de Cooper) de spin total nul. À la même époque, A. Abrikosov définit deux types de supraconducteurs par rapport à leur comportement sous champ magnétique : les supraconducteurs de type I qui expulsent totalement le champ, les supraconducteurs de type II qui expulsent totalement les faibles champs mais qui sont partiellement pénétrés pour un champ intermédiaire conduisant à la formation d’un état mixte où ils demeurent supraconducteurs et cela jusqu’à des champs pouvant atteindre 10 T. Les supraconducteurs de type II furent alors étudiés intensivement car ils ouvraient des possibilités remarquables pour les applications en étant capables de supporter des densités de courant et/ou des champs magnétiques très élevés. Enfin en 1962, B.D. Josephson prédit l’existence d’un effet tunnel aux propriétés très particulières se produisant lorsqu’un supercourant traverse une barrière isolante ultramince ( ≈ 1 nm) séparant deux matériaux supraconducteurs. Ce phénomène qui fut vérifié expérimentalement l’année suivante, est connu sous le nom d’effet Josephson, il est la base des applications électroniques des supraconducteurs conventionnels.
Dans les décennies qui suivirent la découverte de la supraconductivité, les applications des supraconducteurs occupèrent quelques niches spécifiques de ces matériaux, principalement dans le domaine du transport du courant en vue de la réalisation de champs magnétiques intenses et de l’électronique basée sur les jonctions Josephson : électronique rapide, détection millimétrique et magnétique par SQUID (Superconducting Quantum Interference Devices).
La découverte de la supraconductivité dite haute température dans les cuprates en 1986 marqua un tournant important dans l’histoire de la supraconductivité pour deux raisons principales : d’abord parce qu’elle ouvrit le champ à des applications s’affranchissant de la contrainte de l’utilisation de l’hélium liquide, ensuite et surtout parce qu’elle remit en cause la validité de la théorie BCS, obligeant ainsi les théoriciens à proposer de nouvelles théories microscopiques de la supraconductivité. Ce dernier point constitue l’un des enjeux les plus stimulants de la fin de ce siècle dans le domaine de la physique de l’état solide.
Sur le plan des applications, cette découverte ouvrit essentiellement un nouveau champ d’utilisation des supraconducteurs dans le domaine des dispositifs passifs pour les applications en micro-onde (filtres, résonateurs, antennes...). Dans cet article nous n’aborderons que les applications électroniques des supraconducteurs à haute température critique, de ce fait nous exposerons seulement les techniques d’élaborations des films minces. Les applications à fort courant des matériaux et leur synthèse font l’objet d’une autre mise à jour. Nous développerons les théories qui décrivent les supraconducteurs conventionnels, car paradoxalement, elles restent largement utilisées pour les calculs associés aux dispositifs à base de cuprates supraconducteurs et nous discuterons des théories existantes pour la supraconductivité à haute température critique (SHTC). Enfin, nous décrirons quelques propriétés spécifiques aux SHTC et détaillerons les applications utilisées actuellement ainsi que celles en cours de développement.
VERSIONS
- Version courante de août 2021 par Jérôme LESUEUR
DOI (Digital Object Identifier)
CET ARTICLE SE TROUVE ÉGALEMENT DANS :
Accueil > Ressources documentaires > Archives > [Archives] Matériaux fonctionnels - Matériaux biosourcés > Supraconducteurs à haute température critique et applications > Interfaces supraconducteur-métal normal
Cet article fait partie de l’offre
Électronique
(228 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
5. Interfaces supraconducteur-métal normal
Avant de détailler les applications des supraconducteurs à haute température critique, nous allons décrire ce qui se passe à une interface supraconducteur-métal normal ou bien supraconducteur-isolant-métal normal. Ces deux expériences étaient bien comprises dans les supraconducteurs conventionnels, mais elles prennent un relief nouveau dans les supraconducteurs à haute température critique, à la fois parce qu’elles permettent de sonder des caractéristiques essentielles de ces matériaux comme par exemple la densité d’états, mais également parce qu’elles donnent lieu à des effets nouveaux dus à la topologie particulière du paramètre d’ordre.
5.1 Effet tunnel supraconducteur-isolant-métal normal
Le dispositif consistant à injecteur un courant tunnel à partir d’une électrode normale vers un supraconducteur et à mesurer la conductivité dV / dI en fonction de V, fournit une mesure directe de la densité d’états du supraconducteur normalisée à la densité d’états du métal normal en fonction de l’énergie. Cette expérience peut être réalisée soit en fabriquant une telle jonction, soit en approchant une pointe extrêmement fine à une distance bien contrôlée de la surface (microscope à effet tunnel).
On peut ainsi réaliser un dispositif de spectroscopie tunnel. Ce dispositif ne sonde toutefois que la densité d’états au voisinage de la surface de l’échantillon et ne rend pas compte de ce qui se passe en profondeur.
Dans les supraconducteurs conventionnels, les expériences de Giaever sur les jonctions SIN avaient permis dès 1960 de mesurer avec une très haute résolution le gap supraconducteur. En utilisant des monocristaux taillés suivant différentes faces et en formant des jonctions dans les différentes directions il avait été possible de mesurer l’anisotropie de gap dans Sn et Pb et des gaps multiples dans Pb par exemple (dans les supraconducteurs conventionnels le gap peut être anisotrope à cause de l’anisotropie de la surface de Fermi, du couplage électron-phonon ou du spectres de phonons). La résolution angulaire était alors limitée par la sélectivité de l’effet tunnel (5 à 10). Ce type de mesures avait également permis de confirmer les prédictions de la supraconductivité dite « sans gap », lors du dopage du matériau par des impuretés magnétiques....
Cet article fait partie de l’offre
Électronique
(228 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Interfaces supraconducteur-métal normal
BIBLIOGRAPHIE
-
(1) - JOSEPHSON (B.D.) - Possible new effects in superconductive tunneling. - Physics Letters, 1962. 1: p. 251.
-
(2) - GINZBURG (V.L.), LANDAU (L.D.) - * - Zh. Eksp. Teor. Fiz., 1950. 20: p. 1064.
-
(3) - BARDEEN (J.), COOPER (L.N.), SCHRIEFFER (J.R.) - Theory of superconductivity. - Phys. Rev., 1957. 108: p. 1175.
-
(4) - BEDNORZ (J.G.), MÜLLER (K.A.) - Possible superconductivity in the Ba-La-Cu-O system. - Z. Phys. B, 1986. 64: p. 189.
-
(5) - ELIASHBERG (G.M.) - * - Sov. Phys., 1961. 12: p. 1000.
-
(6) - HARLINGEN (D.J.V.) - Phase-sensitive tests of the symmetry of the pairing state in the HTSC - evidence for a symmetry. - Rev. of Mod. Phys., 1995. 67(2): p. 515.
- ...
Cet article fait partie de l’offre
Électronique
(228 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive