Présentation
RÉSUMÉ
Les résonateurs diélectriques sont des éléments de base pour les circuits hyperfréquences comprenant des filtres, des oscillateurs. Cet article présente la fabrication des résonateurs diélectriques en commençant par la caractérisation de la permittivité, du facteur de qualité et de la stabilité thermique, continuant avec le procédé d’élaboration céramique. Ensuite des critères de sélection sont donnés, ainsi que des références du marché. L’origine physique de la permittivité du matériau est introduite avec des listes de matériaux et diagrammes chimiques. Il se termine par la mise en œuvre du résonateur diélectrique utilisé dans le mode TE01d, et des exemples d’oscillateur et de filtres.
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleAuteur(s)
-
Pierre FILHOL : Ingénieur matériaux céramiques hyperfréquences - Temex Components
INTRODUCTION
Dans une première partie Résonateurs diélectriques- Circuits micro-ondes a été présenté le résonateur comme élément de circuit en remplacement des guides d’ondes avec son mode de fonctionnement principal (mode TE01δ ). La manière de le coupler avec divers éléments (boucle, ligne microruban) au circuit extérieur a été exposée ainsi que d’autres modes de fonctionnement (résonateur coaxial, en technologie microruban, modes de galerie). Ensuite, la caractérisation du résonateur sous forme d’un élément de filtre a été reliée à la permittivité complexe du matériau du résonateur. Dans cette deuxième partie, la caractérisation de la permittivité complexe du matériau ainsi que celle de la dérive en température de la fréquence de résonance sont décrites, ainsi que quelques éléments sur l’origine physique de la permittivité, des pertes diélectriques et de la stabilité thermique des matériaux. Une gamme de matériaux est présentée. La mise en œuvre des résonateurs puis quelques exemples d’application sont exposés pour terminer.
VERSIONS
- Version courante de déc. 2016 par Pierre FILHOL
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Électronique
(228 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
7. Applications
7.1 Oscillateurs
La figure 11 présente le schéma d’un oscillateur à 11 GHz stabilisé par un résonateur diélectrique.
Pour déterminer le coefficient en température optimal, la solution la plus simple consiste à réaliser un premier montage avec un matériau à coefficient nul, en optimisant tous les paramètres autres que la stabilité en température (fréquence centrale, pureté spectrale, pertes d’insertion, ondulation...). Le coefficient τ f de ce montage est ensuite mesuré, puis un deuxième montage est réalisé avec un matériau de coefficient – τ f en reproduisant le plus fidèlement possible les conditions de couplage du premier montage. Cette démarche permet en général d’obtenir le résultat souhaité dès cette deuxième étape. Pour des stabilités recherchées très poussées, une itération supplémentaire peut être nécessaire.
La stabilité en température de l’oscillateur de la figure 11 est meilleure que 300 kHz sur 140 oC (figure 12).
HAUT DE PAGE7.2 Filtres
Les filtres sont des dispositifs passifs et réciproques, caractérisés par les paramètres principaux suivants [2] (figure 13) :
-
fréquence centrale f c ;
-
bande passante à x dB ;
-
pertes d’insertion ;
-
taux d’ondulation ;
-
réjection.
Un gabarit est spécifié, définissant aussi la réjection, c’est-à-dire les pertes minimum à une certaine fréquence avant et après la zone de fréquence filtrée, ainsi que les pertes maximum dans la bande utile.
La...
Cet article fait partie de l’offre
Électronique
(228 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Applications
ANNEXES
Le tableau indique le prix de résonateurs diélectriques de permittivité relative comprise entre 35 et 45 pour deux applications.
HAUT DE PAGE
###
Références
MAGE (J.C.) - LABEYRIE (M.) - Les matériaux diélectriques pour résonateurs hyperfréquences. - L’onde électrique, 70, no 5, p. 6-13 (sept.-oct. 1990).
KAJFEZ (D.) - GUILLON (P.) - Dielectric Resonators (Les résonateurs diélectriques). - Artech House (1986).
DURAND (J.M.) - GUILLON (P.) - New Method For Complex Permittivity Measurement of Dielectric Materials. - Electronic Letters, 22, no 2, p. 63-65 (janv. 1986).
HEIDE (P.) - SCHUBERT (R.) - MAGORI (V.) - SCHWARTE (R.) - 24 GHz Low-Cost Doppler Sensor with Fundamental Frequency GaAs Pseudomorphic HEMT Oscillator Stabilized by Dielectric Resonator Operating in Higher- Orde Mode. - IEEE MTT-S Digest, p. 945-48 (1994).
CROS (D.) - GUILLON (P.) - Whispering Gallery Dielectric Resonator Modes for W-Band Devices. - IEEE Transactions on Microwave Theory and Techniques, 38, no 11,...
Cet article fait partie de l’offre
Électronique
(228 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive