Présentation

Article

1 - DÉCOUPAGE DU SYSTÈME EN COUCHES TOPOLOGIQUES

2 - MATRICE D'INTERACTIONS

3 - HYPOTHÈSES D'INTERACTIONS ET CONSTRUCTION DU GRAPHE

4 - CEM DES SOUS-SYSTÈMES : INTERACTIONS CONDUITES

5 - COMPATIBILITÉ RADIOÉLECTRIQUE

  • 5.1 - Définition et exemples de systèmes « à risque » en compatibilité radioélectrique
  • 5.2 - De la CEM à la CRE : de la « compatibilité » à la « coexistence »
  • 5.3 - Performance d'un système et critère de brouillage
  • 5.4 - Différents types d'incompatibilités radioélectriques
  • 5.5 - Phénomènes de brouillage en CRE
  • 5.6 - Méthode d'optimisation de l'implantation des antennes sur un porteur
  • 5.7 - Calcul analytique des découplages minimaux pour les cas à risque

6 - LES ENVIRONNEMENTS RADIATIFS NATURELS (ERN)

7 - TECHNIQUES TOPOLOGIQUES. DIAKOPTIQUE

8 - CONCLUSION

| Réf : E1305 v1

Techniques topologiques. Diakoptique
Notions de CEM des systèmes

Auteur(s) : Olivier MAURICE, Guillaume HUBERT, Evlin YALCIN, Frédéric LAFON

Date de publication : 10 nov. 2011

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

Par opposition à la CEM des composants ou des équipements électronique, l’approche de la CEM de niveau système présente des spécificités. Jusqu’au stade final de la qualification, il est important de maîtriser la définition du système et des travaux par phases successives. Ces étapes sont jalonnées par les spécifications, les analyses d’interactions entre les contributeurs CEM, les modélisations et des essais. Dans cet article, sont présentés les aspects spécifiques de la CEM rencontrés sur un système et la démarche incrémentale dans la logique de démonstration. Des exemples inspirés du domaine des lanceurs spatiaux seront utilisés pour illustrer les différents points évoqués.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

ECM basis of systems

Unlike the EMC of components or electronic equipment, systems EMC presents specific features. Up to the final stage of qualification, it is important to master the definition of system and to work in successive phases. These stages are punctuated by specifications, analysis of correlations between EMC contributors, modeling and tests. In this article, we present specific aspects of EMC that we meet on a system, and the incremental approach in demonstration logic. Examples from the domain of space launchers are used to illustrate the different points raised.

Auteur(s)

  • Olivier MAURICE : Senior Scientist au GERAC - Responsable technique d'études et recherches en CEM au GERAC

  • Guillaume HUBERT : Maître de Recherche ONERA - Responsable des activités « Modélisation et prédiction des SEE » et « Caractérisation de l'ERN atmosphérique » à l'ONERA

  • Evlin YALCIN : Thales

  • Frédéric LAFON : Senior Expert CEM - Responsable de l'activité d'expertise CEM à Valeo

INTRODUCTION

Cet article aborde les problématiques de la CEM des systèmes. La notion de système est l'objet de travaux multiples et va au-delà de celle comprise en CEM. Cependant, on s'en inspire pour définir un système comme un regroupement d'électroniques reliées par des liaisons filaires ou antennaires et dévolu à la réalisation d'une fonction.

Aborder la CEM d'un système dans son ensemble est extrêmement compliqué, mais non impossible. Il faut introduire une part de probabilité pour pallier la méconnaissance ou les incertitudes. Plus modestement, les ingénieurs en CEM étudient tous les jours des systèmes plus ou moins complexes, et si aborder un système complet demande des ressources et des budgets rarement disponibles, morceler le système en parties de complexité réduite pour résoudre des problèmes particuliers attachés à des fonctions critiques est un travail régulièrement accompli.

Nous détaillons tout d'abord cette tâche essentielle, en commençant par le morcellement : l'analyse dite « topologique » du système et le découpage en couches de ses structures. Ce découpage permet d'identifier les fonctions électroniques embarquées puis d'établir la matrice d'interaction, ou matrice des gênes. De cette matrice vont découler des graphes établis pour l'analyse des risques CEM rattachés aux fonctions sous-jacentes. Les intersections entre fonctions mettant à jour des risques de perturbation dans la matrice sont étudiées une par une, en passant par la construction de schémas puis de graphes détaillés permettant, comme il a été expliqué dans l'article [E1302], de calculer ces interactions. Les risques sont ensuite levés par adjonctions éventuelles de protections ou simplement sans actions particulières s'il s'avère que les fonctions ne se perturbent pas.

Pour illustrer cette méthodologie, trois cas concrets sont présentés ainsi que trois façons d'étudier en détail et de résoudre ces cas :

  • la résolution de problèmes conduits sur une carte électronique ;

  • la gestion des perturbations entre antennes embarquées ;

  • les méthodologies attachées aux effets des rayonnements radiatifs naturels.

Ces trois cas sont des applications particulières des démarches exposées en introduction.

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

KEYWORDS

EMC   |   system   |   electrical chains

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-e1305


Cet article fait partie de l’offre

Électronique

(227 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

7. Techniques topologiques. Diakoptique

Comme il a été présenté pour les systèmes d'équipements, la notion d'impédance ramenée est une notion très importante.

Prenons un exemple : un système était soumis à un champ électrique dans le cadre d'un essai. Un défaut apparut et il fut rapidement établi que ce défaut était associé à un signal dans un toron cheminant proche de la structure du système et exposé au champ. La liaison était composée d'un côté d'un équipement relié au plan de référence de la structure et de l'autre côté à un boîtier flottant. Pourtant, si l'on soulevait le toron pour l'éloigner du plan, le défaut disparaissait, alors même que l'intuition aurait suggéré que son exposition plus grande au champ aurait augmenté ce défaut. Mais les impédances avaient évolué de telle sorte que finalement, le niveau transmis au calculateur était plus faible et le défaut disparaissait.

Il ne faut ainsi jamais oublier qu'en CEM, deux éléments interviennent tout le temps : les sources d'énergie et les impédances des réseaux. Nous avons pu voir dans les fondamentaux que ce réseau d'impédance était appelé « métrique ». Lorsque l'on modifie cette métrique, on modifie la façon dont les courants et les tensions se répartissent dans les circuits. Du fait même du principe de l'impédance ramenée, on comprend qu'un système ne peut être la simple mise bout à bout d'équipements et que la performance CEM système n'est pas la somme des performances CEM des composants du système. La technique qui permet de passer de l'un à l'autre emploie l'analyse tensorielle des réseaux [1] et fut appelée par Gabriel Kron « diakoptique ».

HAUT DE PAGE

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Électronique

(227 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Techniques topologiques. Diakoptique
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) - MAURICE (O.) -   Compatibilité électromagnétique des systèmes complexes.  -  Hermès-Sciences, (2007).

  • (2) - CLAYTON (R. P.) -   Analysis of multiconductor transmission lines  -  . Wiley (1994).

  • (3) - BENDHIA (S.), RAMDANI (M.), SICARD (E.) -   Electromagnetic compatibility of integrated circuits – Techniques for low emission and susceptibility  -  Springer (2006).

  • (4) - RUEHLI (A.E.) -   Equivalent Circuit Models for Three Dimensional Multiconductor Systems  -  . IEEE Transactions on Microwave Theory and thechniques, vol. 22, no 3, pages 216-221 (1974).

  • (5) - ZIEGLER (J. F.) et al -   Effect of cosmic rays on computer memories  -  . Science, vol. 206, pp. 776-788 1979.

  • (6) - PICKEL (J. C.), and BLANDFORD (J. T.) -   Cosmic-ray induced errors in Mos devices,  -  IEEE...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Électronique

(227 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS