Présentation

Article

1 - SITUATION

2 - ÉTAPES PRINCIPALES DE CONCEPTION D’UN CONVERTISSEUR

3 - CAS PARTICULIERS

4 - CONCLUSION

| Réf : D3117 v1

Cas particuliers
Définition d’un dissipateur thermique en milieu industriel

Auteur(s) : Jean-François ROCHE

Date de publication : 10 août 2007

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

L’une des étapes, lors de la détermination des différents éléments constituant un convertisseur de puissance, est le choix du dissipateur, qui préserve l’intégrité thermique des semi-conducteurs de puissance. Celle-ci est réalisée en maintenant la température de jonction du composant en dessous de sa valeur critique pendant le cycle de fonctionnement. Le coût du dissipateur, ou plus globalement de la fonction refroidissement, est étroitement lié au couple dissipateur-composant. La démarche industrielle de choix d’un dissipateur est développée ici, compromis entre le calcul académique et une simulation parfois laborieuse.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

One of the stages in the determination of the various elements constitutive of a power converter is the choice of the dissipater which preserves the thermal integrity of power semi-conductors. This integrity is achieved by maintaining the junction temperature of the component below its critical value during the operating cycle. The cost of a dissipater or more globally of the cooling function is closely linked to the coupling of the dissipater with the component. The industrial process concerning the choice of a dissipater is presented in this article, a compromise between academic calculation and a sometimes complex simulation.

Auteur(s)

INTRODUCTION

avec la collaboration de Bruno ALLARD

L’une des étapes, lors de la détermination des différents éléments constituant un convertisseur de puissance, est le choix du dissipateur, afin de préserver l’intégrité thermique des semi-conducteurs de puissance. Celle-ci est réalisée en maintenant la température de jonction du composant en dessous de sa valeur critique pendant le cycle de fonctionnement.

Le coût du dissipateur, ou plus globalement de la fonction refroidissement, est étroitement lié au couple dissipateur-composant.

Par exemple, pour maintenir à température un ou deux boîtiers TO3, le coût du couple « dissipateur + ventilateur » est souvent plus important que la somme des coûts des composants à refroidir. En règle générale, plus l’application est de forte puissance, plus le couple « semi-conducteur + étages de commande » est prépondérant, face au poste dissipateur. Cela est dû en partie au coût des semi-conducteurs de puissance.

Le choix du dissipateur ne peut être effectué qu’en connaissance des éléments suivants :

  • nombre et type des composants à refroidir, donc connaissance du boîtier utilisé pour chaque composant (composant discret, module, presspack...) ;

  • pertes générées par chaque composant (dépendent du cycle de fonctionnement et de la topologie du montage), surcharges éventuelles ;

  • mode de refroidissement souhaité (convection naturelle, ventilation forcée, chambres à eau...) ;

  • contraintes mécaniques et intégration du système dans son environnement final (contraintes diélectriques, fixation du montage, mise en coffret).

L’objet de ce dossier est de développer la démarche industrielle de choix d’un dissipateur, compromis entre le calcul académique et la simulation parfois laborieuse.

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-d3117


Cet article fait partie de l’offre

Conversion de l'énergie électrique

(269 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

3. Cas particuliers

Certains cahiers des charges introduisent une notion de surcharge transitoire (démarrage d’un moteur par exemple) ou un profil de fonctionnement particulier (variation de courant dans un onduleur de traction en fonction du chemin emprunté par la motrice). Dans les cas de surcharge, un calcul complémentaire doit être effectué afin de vérifier les répercussions sur la température de jonction.

3.1 Notion d’impédance thermique

Certaines fiches techniques donnent une courbe d’impédance thermique comme sur la figure 30.

À l’aide de cette courbe, on détermine la résistance thermique équivalente pour une surcharge et un temps donné.

Le temps permet de déterminer un coefficient entre 0 et 1, par exemple 0,64 pour un échelon de puissance de 100 s sur la courbe de la figure 30, la résistance thermique à utiliser pour déterminer l’élévation de température du dissipateur est alors :

L’élévation de température du dissipateur est donc pour un échelon de 1 000 W de 21 oC, au lieu de 33 oC dans le cas classique.

Ces notions sont utilisées dans les circuits de décharge de condensateurs, de démarrage de moteurs et plus généralement pour les phénomènes transitoires.

HAUT DE PAGE

3.2 Notion de constante de temps thermique

Les résistances thermiques permettent de calculer l’élévation de température entre le dissipateur et l’air ambiant dans des conditions stationnaires. Mais l’établissement de la température du dissipateur dans son environnement n’est pas instantané.

On introduit alors une notion d’impédance thermique, qui intègre la capacité thermique en plus de la résistance thermique.

Le calcul de l’élévation de température devient :

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Conversion de l'énergie électrique

(269 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Cas particuliers
Sommaire
Sommaire
INFORMATIONS DIVERSES

avec la collaboration de Bruno ALLARD.

BIBLIOGRAPHIE

  • (1) -   IGBT Module. Application Manual.  -  Hitachi Ltd.http://www.pi.hitachi.co.jp/pse/ images/pdf/igbt-aple.pdf

  • (2) -   Fuji IGBT Modules Application Manual.  -  Fuji Device Technology Co Ltd. (2004). http://www.fujisemiconductor.com/old_pdf/app_notes/fuji_igbt_application_manual(REH984).pdf

  • (3) -   The next generation of cooling equipment.  -  Austerlitz. http://www.austerlitz-electronic.de/AE_K2004.pdf

  • (4) -   Thermal management.  -  Ferraz Date Industries (2001). http://www.ferraz-shawmut.com/fr/resources/pdfs/thermal-management.pdf

  • (5) -   Thermal Response of Semiconductor.  -  Application Note AN-292, Motorola.

  • (6) - LEFRANC (P.) -   Étude, conception et réalisation de circuits de commande d’IGBT de forte puissance.  -  Institut national des sciences appliquées de Lyon (2005).

NORMES

  • Convertisseurs à semi-conducteurs. Code d’identification pour montages convertisseurs (supprimée en 2004). - CEI/TR 60971 - 07-89

1 Logiciels

(liste non exhaustive)

HAUT DE PAGE

1.1 Simulation électrique

Simplorer http://www.ansoft.com/products/em/simplorer/

Saber http://www.synopsys.com/saber/

SPICE http://bwrc.eecs.berkeley.edu/Classes/IcBook/SPICE/

HAUT DE PAGE

1.2 Simulation thermique

FLUENT http://www.fluent.com/

FLOTHERM http://www.flomerics.fr/flotherm/

Icepak http://www.icepak.com/

HAUT DE PAGE

2 Fabricants

(liste non exhaustive)

ABB (IGBT, semi-conducteurs de puissance) http://www.abb.fr/

ARCEL (composants de puissance, dissipateurs, montages) http://www.arcel.fr/

Fuji Electric (IGBT, semi-conducteurs de puissance) http://www.fujielectric.de/

IXYS (IGBT, semi-conducteurs de puissance) http://www.ixys.com/

Infineon...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Conversion de l'énergie électrique

(269 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS