Présentation
En anglaisAuteur(s)
-
Bernard DEMOULIN
-
Pierre DEGAUQUE : Professeurs à l’Université de Lille-1 Laboratoire de Radio Propagation et Électronique UPRESSA CNRS 8023
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
Les blindages électromagnétiques ont pour but de protéger des installations électroniques (ou électriques) contre les effets redoutables de certains couplages électromagnétiques. Un blindage permet d’accroître l’immunité électromagnétique d’un équipement ; cette fonction est aussi réversible puisqu’elle peut réduire l’amplitude de rayonnements indésirables. Face aux phénomènes de perturbations électromagnétiques, le blindage réagit comme une frontière physique, isolant les composants sensibles aux perturbations ou confinant les sources rayonnantes dans un volume restreint. Pour diverses raisons, surtout liées à la nature physique des matériaux qui composent le blindage ainsi qu’aux contraintes technologiques imposées par leur fabrication ou leur installation, cette frontière n’est pas totalement imperméable. Un parasite résiduel peut donc pénétrer dans la zone protégée par le blindage.
Comme le précisent les définitions usuelles rappelées dans le premier paragraphe de l’article, on attribue aux blindages une efficacité. Il peut s’agir d’un rapport d’amplitude ou d’un paramètre linéique homogène à une impédance. La protection apportée par les blindages se résume dans la plupart des cas à une association de composants où se conjuguent des câbles blindés, des enceintes blindées et des connecteurs. Les paragraphes qui composent la suite de l’article vont examiner les causes physiques qui rendent les blindages imparfaits ainsi que les méthodes qui permettent de calculer ou mesurer leur efficacité. Pour conclure, sont évoquées les protections complémentaires qui accompagnent bien souvent l’action réductrice des blindages ; en particulier, on signalera les câbles filtrants, les limiteurs d’amplitude et les blindages à effet de surface.
VERSIONS
- Version courante de févr. 2024 par Bernard DÉMOULIN, Pierre DEGAUQUE
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Conversion de l'énergie électrique
(269 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Câbles blindés
3.1 Impédance et admittance de transfert
L’impédance et l’admittance de transfert trouvent leur origine dans des coefficients de couplage électromagnétique qui proviennent de la théorie des lignes couplées.
Dans une installation ou sur un équipement électronique, les câbles blindés sont généralement localisés à proximité d’un plan ou de conducteurs de masse ; un champ électromagnétique perturbateur peut donc engendrer, sur le blindage, un courant et une tension prenant naissance sur la ligne de propagation composée du blindage parallèle à la référence de masse.
Si le blindage constitue la référence locale de potentiel des équipements connectés aux extrémités du câble, son imperfection engendre, aux extrémités, des tensions et courants d’amplitude beaucoup plus faibles que ceux rencontrés sur la ligne de propagation extérieure au câble blindé.
L’impédance de transfert Zt et l’admittance de transfert Yt vont donc figurer dans les équations différentielles qui lient les deux lignes de propagation.
Une simplification intervient si l’on suppose que les longueurs d’ondes associées aux courants et tensions sont bien supérieures à la dimension longitudinale du câble. Sous ces conditions, l’impédance et l’admittance de transfert correspondent aux définitions données dans les paragraphes 3.1.1 et 3.1.2.
Un câble coaxial est installé parallèlement à un plan conducteur (figure 5).
À une extrémité du câble prend place une source de f.é.m. E0 et d’impédance interne Z0 ; la source est connectée entre le blindage et le plan de masses. À l’extrémité...
Cet article fait partie de l’offre
Conversion de l'énergie électrique
(269 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Câbles blindés
BIBLIOGRAPHIE
-
(1) - SCHELKUNOFF (S.A.) - Electromagnetic Waves - . Van Nostrand Éd., 1943.
-
(2) - SCHULZ (R.B.), PLANTZ (V.C.), BRUSCH (D.R.) - Shielding Theory and Practice - . IEEE Trans. on Electromagn. Compat., vol. 30, no 3, pp. 187-201, 1988.
-
(3) - CASEY (K.F.) - Electromagnetic Shielding Behavior of Wire-Mesh Screens - . IEEE Trans. on Electromagn. Compat., vol. 30, no 3, pp. 298-306, 1988.
-
(4) - LEE (K.S.H.) (Ed.) - EMP Interaction : Principles, Techniques and Reference Data - . Summa book, 1986.
-
(5) - CHU (G.), DUDLEY (D.G.), BRISTOL (T.L.) - Interaction between an electromagnetic plane wave and a spherical shell - . J. of Applied Physics, vol. 40, no 10, pp. 3904-3914, 1969.
-
(6) - DEGAUQUE (P.), HAMELIN (J.) - Compatibilité Électromagnétique - . Dunod Éd.,...
DANS NOS BASES DOCUMENTAIRES
-
Compatibilité électromagnétique. Modes de transmission
FAUVEAUX (S.) - Élaboration de composites conducteurs à base de polyaniline : réalisation et caractérisation de blindages électromagnétiques large bande. - Université de Bordeaux I (2003).
NADIR (Z.) - Caractérisation de plusieurs méthodes d'essais utilisées en compatibilité électromagnétique à partir de mesures pratiquées sur des objets respectant les propriétés des lignes de transmission couplées. - Lille I (1999).
HAUT DE PAGE2.1 Commission électrotechnique internationale (CEI-IEC)
CEI-96-1 - Câbles pour fréquences radioélectriques, prescriptions générales et méthodes. Édition 1993. - -
CEI-96-2 - Câbles pour fréquences radioélectriques. Spécifications particulières de câbles. Édition 1997. - -
CEI-96-3 - Câbles pour fréquences radioélectriques. Prescriptions générales et essais applicables aux câbles coaxiaux, unitaires, pour utilisation dans les réseaux de distribution par câbles. Édition 1982. - -
CEI/TR3 61 917 - Câbles, cordons et Connecteurs Introduction aux mesures de blindage électromagnétique. Édition 1998-06. - -
EN 61 000-4-2 - Compatibilité électromagnétique Partie 4...
Cet article fait partie de l’offre
Conversion de l'énergie électrique
(269 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive