Présentation
Auteur(s)
-
Pierre BRISSONNEAU : Professeur à l’Institut National Polytechnique de Grenoble
Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.
Lire l’articleINTRODUCTION
Est‐il vraiment nécessaire d’insister sur le rôle primordial, irremplaçable, que joue l’énergie électrique dans le développement de nos sociétés dites avancées ? Après seulement un siècle d’existence, l’électricité a tout envahi. Elle conditionne la plupart de nos activités, notre production industrielle, notre confort et nos loisirs.
Les développements prodigieux que l’on a enregistrés depuis la fin du XIX e siècle dans la production, la distribution et l’utilisation de l’énergie électrique n’ont été rendus possibles que grâce à la maîtrise des lois de l’électromagnétisme d’une part, et à l’existence de matériaux de mieux en mieux adaptés aux besoins d’autre part. Les matériaux magnétiques mis en œuvre par les constructeurs électriciens sont finalement peu nombreux. On les range selon leur mode de fonctionnement en deux grandes classes : les matériaux doux d’une part, et les aimants d’autre part. Les ferromagnétiques doux servent à réaliser des circuits soumis à un flux d’induction variable. Ce type de circuit est étudié dans l’article Détermination des champs magnétiques. Circuits magnétiques Circuits magnétiques de ce traité et les matériaux doux dans les articles Alliage fer‐silicium Alliages fer-silicium. Alliages fer‐nickel et fer‐cobalt Alliages fer-nickel et fer-cobalt- Propriétés magnétiques de ce traité et dans les articles Alliages magnétiques doux [M 350] du traité Matériaux métalliques et Ferrites doux [E 1 760] du traité Électronique. En principe, les aimants ne sont intéressants que pour réaliser des circuits où règne un flux d’induction constant ou peu variable.
On utilise les aimants dans un très grand nombre de dispositifs électromagnétiques pour créer des forces d’interaction à distance. Par exemple, dans un moteur électrique, le rotor peut comporter un aimant sur lequel agit un champ tournant, ce qui donne naissance à un couple. Dans un tel système, l’aimant joue un rôle décisif, mais il n’est jamais isolé. Ce n’est qu’un composant d’un ensemble plus vaste qu’on appelle le circuit magnétique, qui doit être étudié avec soin pour en obtenir les performances optimales.
En pratique, on rencontre une très grande variété de circuits et d’applications, et, comme de nouveaux développements voient constamment le jour, cette diversité décourage a priori toute tentative de classification.
Plutôt que de dresser une liste d’applications qui ne saurait être exhaustive et se révélerait probablement très vite périmée, l’auteur croit préférable d’insister sur les principes de fonctionnement des aimants, afin que chaque technicien intéressé soit mieux à même d’analyser et de résoudre ses problèmes spécifiques.
À cet effet, nous accorderons une importance exceptionnelle, dans les premiers paragraphes de cet article, aux rappels d’électromagnétisme classique 1 et à la physique des matériaux ferromagnétiques 2.
Même s’ils n’ont pas la réputation d’être faciles à comprendre, les problèmes de magnétisme ne sont pas plus difficiles à analyser et à résoudre que d’autres. On ne peut toutefois travailler de façon efficace qu’en ayant bien assimilé les bases de l’électromagnétisme, pour comprendre en particulier les relations entre les différents champs qui régissent l’équilibre énergétique du système. Il faut connaître aussi, bien entendu, les caractéristiques intrinsèques des matériaux et leurs variations en fonction de l’environnement, qui font l’objet d’un article distinct (Aimants permanents. Matériaux et applications Aimants permanents- Matériaux et applications). En toute logique, les propriétés particulières des différents matériaux ne peuvent être abordées qu’après avoir bien assimilé les lois générales qui régissent leur comportement.
Dans cet article, nous n’utiliserons pas, pour l’aimantation 1.4, le symbole normalisé M (exprimé en A/m). Nous appellerons aimantation ce qui est, en réalité, la polarisation magnétique ou induction intrinsèque :
Cette grandeur s’exprime en teslas, unité bien adaptée au traitement des matériaux utilisés en construction électrique et habituellement employée dans la physique des matériaux magnétiques.
DOI (Digital Object Identifier)
Cet article fait partie de l’offre
Conversion de l'énergie électrique
(270 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Présentation
3. Fonctionnement des circuits magnétiques à aimants
3.1 Notion de circuit magnétique
Imaginons qu’un constructeur électricien veuille soumettre un bobinage parcouru par un courant à un champ magnétique convenable pour fabriquer un actionneur. Quelle source de champ magnétique doit‐il choisir ? Comme on l’a vu au paragraphe 1, la matière aimantée permet d’obtenir des champs magnétiques plus intenses que les courants seuls. Mais un aimant nu ne permet pratiquement jamais de remplir toutes les exigences du constructeur au meilleur coût. Les aimants sont chers, durs et fragiles ; ils ne sont disponibles qu’en géométrie simple et difficiles à usiner à des cotes précises. On a donc souvent intérêt à leur associer des pièces annexes en matériau ferromagnétique doux, appelées pièces polaires, pour constituer un circuit magnétique dont le rôle consiste à créer un champ magnétique convenable dans un volume choisi appelé entrefer. Cette association des trois milieux (l’aimant permanent, le ferromagnétique doux et le vide) se retrouve dans la majorité des circuits magnétiques à aimants.
Nous aurons l’occasion, dans la suite de cet article, de décrire le fonctionnement de nombreux circuits magnétiques. L’aimant de haut‐parleur est probablement parmi les plus simples.
Un bon circuit magnétique est un circuit qui permet d’obtenir toutes les performances exigées par l’utilisateur, et cela au meilleur coût.
Pour formuler son jugement, le constructeur doit être capable d’évaluer les grandeurs magnétiques en tous les points de l’espace, quand il se donne a priori la géométrie et les propriétés physiques des matériaux qui constituent le circuit. Pour ce faire, il faut résoudre les équations de l’électromagnétisme et obtenir une solution qui satisfasse toutes les conditions physiques imposées. Cette solution correspond à ce que l’on peut appeler l’équilibre magnétique. On sait qu’elle existe toujours...
Cet article fait partie de l’offre
Conversion de l'énergie électrique
(270 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive
Fonctionnement des circuits magnétiques à aimants
Cet article fait partie de l’offre
Conversion de l'énergie électrique
(270 articles en ce moment)
Cette offre vous donne accès à :
Une base complète d’articles
Actualisée et enrichie d’articles validés par nos comités scientifiques
Des services
Un ensemble d'outils exclusifs en complément des ressources
Un Parcours Pratique
Opérationnel et didactique, pour garantir l'acquisition des compétences transverses
Doc & Quiz
Des articles interactifs avec des quiz, pour une lecture constructive