Présentation

Article

1 - ÉVOLUTION DE LA DISCIPLINE

2 - DÉFAILLANCES, MISSIONS ET FONCTIONS D'UN SYSTÈME ET DE SES COMPOSANTS

3 - CONCEPTS DE BASE ET SÛRETÉ DE FONCTIONNEMENT

| Réf : S8250 v2

Défaillances, missions et fonctions d'un système et de ses composants
Sûreté de fonctionnement des systèmes industriels complexes - Principaux concepts

Auteur(s) : Gilles ZWINGELSTEIN

Date de publication : 10 juin 2009

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

L’actualité nous le rappelle malheureusement, le risque zéro n'existe pas pour les activités industrielles, la survenue d’accidents étant le résultat de l’occurrence de défaillances humaines ou matérielles. Des méthodes et outils scientifiques ont été développés pour évaluer les risques potentiels, et tenter de minimiser les conséquences de catastrophe lorsqu’elle se produit. La Sûreté de fonctionnement a pour finalité de maîtriser d’un côté les défaillances des systèmes technologiques et de l’autre les défaillances humaines pour éviter des conséquences sur la sécurité des personnes, les pertes de productivité et les atteintes à l'environnement. Cet article énonce les concepts de base qui fondent l’approche de Sûreté de fonctionnement.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

ABSTRACT

Unfortunately as current events remind us, zero risk does not exist for industrial activities, the occurrence of accidents being the result of human or material failures. Certain methods and scientific tools have been developed in order to assess the potential risks and try to minimize the consequences in the event of a catastrophe. The objective of the Operating Safety is to master the failures of technological systems and humans in order to avoid consequences on the safety of individuals, productivity losses and environmental damage. This article presents the basic concepts upon which the Operating Safety approach is based.

Auteur(s)

  • Gilles ZWINGELSTEIN : Ingénieur de l'École nationale supérieure d'électrotechnique, d'électronique, d'informatique et d'hydraulique et des télécommunications de Toulouse (ENSEEIHT) - Docteur-ingénieur, Docteur ès sciences - Professeur des universités associé

INTRODUCTION

Les enjeux de la « Sûreté de fonctionnement »

Tchernobyl, Bhopal, AZF, Concorde, Columbia, sont des exemples des activités industrielles et humaines qui malheureusement font presque quotidiennement les grands titres des actualités avec leurs cortèges d'incidents, d'accidents ou d'événements catastrophiques. En effet, le zéro défaut ou le risque zéro n'existe malheureusement pas pour les activités industrielles à cause de l'occurrence de défaillances humaines ou matérielles.

Toutefois, pour tenter de réduire les risques à un niveau le plus faible possible et acceptable par l'opinion publique, des méthodes, des techniques et des outils scientifiques ont été développés dès le début du 20e siècle pour évaluer les risques potentiels, prévoir l'occurrence des défaillances et tenter de minimiser les conséquences des situations catastrophiques lorsqu'elles se produisent.

L'ensemble de ces développements méthodologiques à caractère scientifique représente, à l'aube du troisième millénaire, la discipline de la Sûreté de fonctionnement.

La Sûreté de fonctionnement consiste à connaître, évaluer, prévoir, mesurer et maîtriser les défaillances des systèmes technologiques et les défaillances humaines pour éviter des conséquences sur la santé et la sécurité des personnes, les pertes de productivité, les atteintes à l'environnement et pour les générations futures, la préservation des ressources de la planète.

Cet ensemble de dossiers sur la Sûreté de fonctionnement des systèmes industriels complexes comprend les fascicules :

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v2-s8250


Cet article fait partie de l’offre

Automatique et ingénierie système

(138 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

2. Défaillances, missions et fonctions d'un système et de ses composants

2.1 Défaillance fonctionnelle

Une défaillance est « l'altération ou la cessation de l'aptitude d'un ensemble à accomplir sa ou ses fonction(s) requise(s) avec les performances définies dans les spécifications techniques ». L'ensemble est alors indisponible suite à la défaillance. La cessation de l'aptitude conduit l'entité à être dans un état appelé panne.

Un ensemble est défaillant si ses capacités fonctionnelles sont interrompues (panne ou arrêt volontaire par action d'un système interne de protection ou une procédure manuelle équivalente). Dans le cas d'une dégradation sans perte totale de la fonction, on considère qu'il s'agit d'une défaillance si sa performance tombe au dessous d'un seuil défini, lorsqu'un tel seuil minimal est contenu dans les spécifications fonctionnelles du matériel.

Pour bien comprendre la notion de défaillance, on peut faire une analogie avec le la représentation d'une fonction mathématique multivariable Y = f(X1,X2,X3,……XN).

Dès qu'une variable Xi sort de son domaine de validité, automatiquement la fonction Y n'est plus assurée. La figure 1 illustre cette situation, et dans ce cas, on associe à la perte de la fonction, un mode de défaillance causée par le comportement de la composante Xi.

Il s'ensuit qu'un ensemble est défaillant s'il est considéré ou déclaré incapable d'assurer les fonctions requises par l'exploitant utilisant des critères fonctionnels simples. Toute étude de fiabilité implique l'acceptation de deux états totalement exclusifs : le fonctionnement normal et le fonctionnement défaillant. Contrairement à la maintenance où l'on considère un fonctionnement dégradé, la Sûreté de Fonctionnement considère uniquement deux états : un état de fonctionnement normal et état de panne.

Attention : le mode de panne est la façon par laquelle est constatée l'incapacité d'un bien à accomplir une fonction requise, et l'emploi du terme « mode de défaillance » dans ce sens est déconseillé (norme EN 13306 : juin 2001).

Les passages d'un état de fonctionnement normal à un état défaillant pouvant se...

Cet article est réservé aux abonnés.
Il vous reste 94% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Automatique et ingénierie système

(138 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Défaillances, missions et fonctions d'un système et de ses composants
Sommaire
Sommaire

1 Sites Internet

Advanced Logistics Developments Ltd

http://www.aldservice.com/

Air Force Quality Institute

http://www.au.af.mil/au/afqi/

American Society for Quality

http://www.asq.org/certification/reliability-engineer/index.html

Australian...

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Automatique et ingénierie système

(138 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS