Présentation

Article

1 - ALGORITHMES GÉNÉTIQUES, ALGORITHMES ÉVOLUTIONNAIRES ET DARWINISME ARTIFICIEL

2 - PROGRAMMER ET UTILISER UN ALGORITHME ÉVOLUTIONNAIRE

3 - APERÇU THÉORIQUE : POURQUOI ET COMMENT ÇA MARCHE ?

4 - EXTENSIONS DU MODÈLE

5 - EXEMPLES D’APPLICATIONS

  • 5.1 - Vision stéréo pour la robotique par algorithme évolutionnaire : l’algorithme des mouches (figure )
  • 5.2 - Dans le domaine artistique, exemple du logiciel ArtiE-Fract (figure )

6 - CONCLUSION

| Réf : S7218 v1

Aperçu théorique : pourquoi et comment ça marche ?
Algorithmes génétiques et algorithmes évolutionnaires

Auteur(s) : Évelyne LUTTON

Relu et validé le 09 mai 2019

Pour explorer cet article
Télécharger l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !

Sommaire

Présentation

RÉSUMÉ

Les algorithmes évolutionnaires se basent sur l’observation des phénomènes biologiques mis en œuvre par des populations d’organismes vivants en vue de s’adapter à leur environnement. Ces mécanismes de sélection et d’héritage génétique représentent une version artificielle de la théorie de l'évolution selon Darwin. Cette discipline couvre ainsi un ensemble de techniques, nommées « algorithmes génétiques », « programmation génétique », « stratégies d’évolution », « programmation évolutionnaire ». Le domaine des algorithmes évolutionnaires est en pleine expansion tant au niveau théorique qu’au niveau applicatif.

Lire cet article issu d'une ressource documentaire complète, actualisée et validée par des comités scientifiques.

Lire l’article

Auteur(s)

INTRODUCTION

Les principes de base des algorithmes évolutionnaires (en court AE), dont les plus connus sont les algorithmes génétiques, s’inspirent de l’observation de phénomènes biologiques, plus précisément de la capacité de populations d’organismes vivants à s’adapter à leur environnement à l’aide de mécanismes de sélection et d’héritage génétique. En d’autres termes, ces algorithmes évolutionnaires représentent une version artificielle, informatique, de la théorie de l’évolution selon Darwin.

Depuis une quarantaine d’années, de nombreuses méthodes de résolution de problèmes, d’optimisation stochastique, ont été développées à partir de ces principes simplifiés à l’extrême pour les besoins informatiques. C’est ce que l’on commence actuellement à nommer de façon générale le « darwinisme artificiel ». Le terme « algorithmes évolutionnaires » couvre ainsi un ensemble de techniques, nommées « algorithmes génétiques », « programmation génétique », « stratégies d’évolution », « programmation évolutionnaire », suivant la façon dont les principes darwiniens sont traduits dans le modèle artificiel.

Cet article est réservé aux abonnés.
Il vous reste 93% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

VERSIONS

Il existe d'autres versions de cet article :

DOI (Digital Object Identifier)

https://doi.org/10.51257/a-v1-s7218


Cet article fait partie de l’offre

Automatique et ingénierie système

(137 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Présentation

3. Aperçu théorique : pourquoi et comment ça marche ?

La grande question est de savoir quand et comment utiliser efficacement des AE, puisque ce sont des algorithmes d’optimisation assez complexes à mettre en œuvre (on l’a dit, l’approche en « boîte noire » n’est pas raisonnable) et relativement coûteux en temps de calcul. La réponse à cette question n’est pas simple. Cependant, d’assez nombreuses analyses théoriques et expérimentales fournissent quelques éléments de réponse, pour comprendre quand l’emploi d’un AG se justifie ou peut apporter quelque chose en comparaison ou en collaboration avec des techniques classiques.

Historiquement, la théorie des schémas représente la première « théorie » de convergence globale des algorithmes génétiques, c’est en fait une modélisation extrêmement simplifiée du comportement d’un AE  , résidant sur des hypothèses valides uniquement dans les premiers pas de l’algorithme et dans le cas de populations de taille infinie. Cette approche a été relativement décriée, car elle repose sur des approximations peu réalistes, elle reste cependant une excellente base intuitive pour comprendre les mécanismes de convergence, notamment concernant le rôle de l’opérateur de croisement.

Parallèlement, ont été développés des résultats de convergence locale pour les stratégies d’évolution  ...

Cet article est réservé aux abonnés.
Il vous reste 95% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Automatique et ingénierie système

(137 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS

Lecture en cours
Aperçu théorique : pourquoi et comment ça marche ?
Sommaire
Sommaire

BIBLIOGRAPHIE

  • (1) -   *  -  Chapter Modelling GA Dynamics, Proceedings Theoretical Aspects of Evolutionary Computing, p. 59-86 (2001).

  • (2) - ALBERT (J.), FERRI (F.), DOMINGO (J.), VINCENS (M.) -   An approach to natural scene segmentation by means of genetic algorithms with fuzzy data.  -  In Pattern Recognition and Image Analysis. Selected papers of the 4th Spanish Symposium (sept. 90), Perez de la Blanca Ed., p. 97-113 (1992).

  • (3) - ALTENBERG (L.) -   Evolutionary computation models from population genetics. part 2 : An historical toolbox.  -  In Congress on Evolutionary Computation, Tutorial (2000).

  • (4) - ANGELINE (P.J.) -   Evolving fractal movies.  -  In Genetic Programming 1996 : Proceedings of the First Annual Conference, John R. Koza and David E. Goldberg and David B. Fogel and Rick L. Riolo (Eds), p. 503-511 (1996).

  • (5) - ANGELINE (P.J.), POLLACK (J.B.) -   Competitive environments evolve better solutions for complex tasks.  -  In Proceedings of the Fifth International Conference on Genetic Algorithms, San Mateo, California, Morgan Kaufmann (1993).

  • ...

Cet article est réservé aux abonnés.
Il vous reste 92% à découvrir.

Pour explorer cet article
Téléchargez l'extrait gratuit

Vous êtes déjà abonné ?Connectez-vous !


L'expertise technique et scientifique de référence

La plus importante ressource documentaire technique et scientifique en langue française, avec + de 1 200 auteurs et 100 conseillers scientifiques.
+ de 10 000 articles et 1 000 fiches pratiques opérationnelles, + de 800 articles nouveaux ou mis à jours chaque année.
De la conception au prototypage, jusqu'à l'industrialisation, la référence pour sécuriser le développement de vos projets industriels.

Cet article fait partie de l’offre

Automatique et ingénierie système

(137 articles en ce moment)

Cette offre vous donne accès à :

Une base complète d’articles

Actualisée et enrichie d’articles validés par nos comités scientifiques

Des services

Un ensemble d'outils exclusifs en complément des ressources

Un Parcours Pratique

Opérationnel et didactique, pour garantir l'acquisition des compétences transverses

Doc & Quiz

Des articles interactifs avec des quiz, pour une lecture constructive

ABONNEZ-VOUS