Carole ROSSI
CNRS, LAAS, 7 avenue du Colonel Roche, F-31400 Toulouse, France - Université de Toulouse, LAAS, F-31400 Toulouse, France
Les avancées dans le domaine énergétique obligent à la création de nouvelles générations de matériaux énergétiques conçus pour les applications microsystèmes. Les nanotechnologies, avec les perspectives de maîtrise de la composition et de la structure à l’échelle nanométrique, arrivent à point pour répondre à cette attente. De ce fait, les voies d’amélioration des matériaux conventionnels, mais également celles de synthèse de matériaux nanocomposites thermiques sont nombreuses et prometteuses. Les observations ont établi que certaines des propriétés des matériaux énergétiques, comme la température d’initiation et la vitesse de combustion, sont fortement influencées par l’agencement et l’intimité de contact des constituants.
La simulation à l’échelle atomique permet de prédire, quantifier et interroger avec force détails la chimie des interactions entre atomes et d’en déduire leur organisation à l’échelle des interfaces. Cet article a pour ambition de présenter une démarche de la simulation à l’échelle atomique qui combine calculs quantiques et simulations par Monte Carlo Cinétique respectivement pour prédire la chimie des processus élémentaires qui gouvernent le dépôt par ALD et pour bâtir une simulation à l’échelle du procédé technologique. Quelques exemples d’étude concernant le dépôt d’oxydes pour la microélectronique et la réalisation de couches barrières pour les matériaux énergétiques seront proposés.