Thierry POCHET
Nuclear Instrumentation Specialist - Chercheur détaché du CEA – Agence Internationale de l’Énergie Atomique (AIEA)
Le choix des matériaux utilisés pour la détection de rayonnement s’appuie principalement sur les propriétés d’interaction des particules avec la matière et de collection des charges ou des photons générés. Cet article s’attarde à présenter les quatre types de particules présentes dans l’industrie nucléaire : alphas (?), électrons (?), photons (X ou ?) et neutrons. Pour chacune d’elles, sont listées leurs provenances et leurs propriétés d’interaction avec la matière (effets en jeu). Sont également abordés les différents détecteurs disponibles et permettant de les détecter, avec leurs techniques et principes de fonctionnement.
Cet article traite du fonctionnement des principaux détecteurs nucléaires utilisés aujourd’hui. Ces dispositifs de mesure interviennent dans de nombreux domaines, l’industrie nucléaire bien sûr, mais également la recherche en physique, le monde médical…sans oublier la sécurité. En introduction, les différentes manières de détecter un rayonnement (mode courant, mode impulsionnel) sont présentées, ainsi que les définitions essentielles. Sont ensuite détaillés les principes physiques de la détection directe, avant de s’attarder sur ceux de la détection physique indirecte.
Cet article s’intéresse aux caractéristiques techniques et aux modes de fonctionnement des différents types de détecteurs nucléaires disponibles sur le marché. On en distingue couramment trois familles : les détecteurs à gaz eux-mêmes subdivisés en sous-familles selon la valeur de leur gain interne, les détecteurs à semi-conducteur qui nécessitent l’utilisation de matériaux extrêmement purs, et les détecteurs à scintillation inorganiques et organiques.