Marc LENOIR
Directeur de recherche au CNRS - École nationale supérieure des techniques avancées
Des outils d’analyse pour accéder aux résultats généraux de la théorie spectrale et à ceux spécifiques relatifs aux opérateurs compacts, existent déjà, notamment ceux encadrant la théorie des fonctions analytiques. Cependant, aborder en profondeur les opérateurs normaux nécessite des outils supplémentaires : théorie de la mesure, topologies découlant d’une famille de semi-normes ainsi que sur la notion algébrique d’idéal et sur l’axiome du choix. Cet article présente divers aspects du théorème spectral des opérateurs normaux. Ainsi, l’intégrale de Dunford permet de construire des projecteurs réduisant l’opérateur selon ses composantes élémentaires. Cependant, en l’absence de décomposition du spectre en composantes connexes, la construction de projecteurs nécessite le recours aux outils de la théorie de la mesure.
Pour résoudre les problèmes dans lesquels apparaissent les opérateurs linéaires, il est nécessaire de les simplifier. Dans ce but, on utilise le principe de la théorie spectrale, qui permet d'obtenir des formes réduites en décomposant les opérateurs linéaires en une collection d'opérateurs élémentaires. En dimension finie (cas des matrices), cela revient à la décomposition de l’opérateur en la somme d’opérateurs de multiplication et d’un opérateur nilpotent (formes réduites analogues aux formes canoniques de Jordan). Dans le cas des espaces de dimension infinie, la théorie spectrale est également utilisée pour l’étude d’équations, qu’elles soient intégrales ou aux dérivées partielles.